mirror of
https://github.com/andreytkachenko/kdtree-rust.git
synced 2024-11-29 04:43:36 +04:00
95 lines
4.8 KiB
Markdown
95 lines
4.8 KiB
Markdown
# kdtree-rust [![Build Status](https://travis-ci.org/fulara/kdtree-rust.svg?branch=develop)](https://travis-ci.org/fulara/kdtree-rust) [![Build Status](https://img.shields.io/crates/v/fux_kdtree.svg?branch=develop)](https://crates.io/crates/fux_kdtree)
|
|
kdtree implementation for rust.
|
|
|
|
Implementation uses sliding midpoint variation of the tree. [More Info here](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.210&rep=rep1&type=pdf)
|
|
Implementation uses single `Vec<Node>` to store all its contents, allowing for quick access, and no memory fragmentation.
|
|
|
|
###Usage
|
|
Tree can only be used with types implementing trait:
|
|
```
|
|
pub trait KdtreePointTrait : Copy {
|
|
fn dims(&self) -> &[f64];
|
|
}
|
|
```
|
|
|
|
Thanks to this trait you can use any dimension. Keep in mind that the tree currently only supports up to 3D [#2](/../../issues/2).
|
|
Examplary implementation would be:
|
|
```
|
|
pub struct Point3WithId {
|
|
dims: [f64; 3],
|
|
pub id: i32,
|
|
}
|
|
|
|
impl KdtreePointTrait for Point3WithId {
|
|
#[inline] // the inline on this method is important! as without it there is ~25% speed loss on the tree when cross-crate usage.
|
|
fn dims(&self) -> &[f64] {
|
|
return &self.dims;
|
|
}
|
|
}
|
|
```
|
|
Where id is just a example of the way in which I carry the data.
|
|
With that trait implemented you are good to go to use the tree. Keep in mind that the kdtree is not a self balancing tree, It does support adding the nodes with method 'insert_node' and there is indeed a code to rebuild the tree if depths grows substantially. Basic usage can be found in the integration test, fragment copied below:
|
|
```
|
|
let tree = kdtree::kdtree::Kdtree::new(&mut points.clone());
|
|
|
|
//test points pushed into the tree, id should be equal.
|
|
for i in 0 .. point_count {
|
|
let p = &points[i];
|
|
|
|
assert_eq!(p.id, tree.nearest_search(p).id );
|
|
}
|
|
```
|
|
Although not recommended for the kd-tree you can use the `insert_node` and `insert_nodes_and_rebuild` functions to add nodes to the tree. `insert_node` does silly check to check whether the tree should be rebuilt. `insert_nodes_and_rebuild` Automatically rebuilds the tree.
|
|
|
|
for now the removal of the nodes is not supported.
|
|
|
|
##Benchmark
|
|
`cargo bench` using travis :)
|
|
```
|
|
running 3 tests
|
|
test bench_creating_1000_000_node_tree ... bench: 275,155,622 ns/iter (+/- 32,713,321)
|
|
test bench_adding_same_node_to_1000_tree ... bench: 42 ns/iter (+/- 11)
|
|
test bench_creating_1000_node_tree ... bench: 120,310 ns/iter (+/- 4,746)
|
|
test bench_single_lookup_times_for_1000_node_tree ... bench: 164 ns/iter (+/- 139)
|
|
test result: ok. 0 passed; 0 failed; 0 ignored; 4 measured
|
|
```
|
|
|
|
~275ms to create a 1000_000 node tree. << this bench is now disabled.
|
|
~120us to create a 1000 node tree.
|
|
160ns to query the tree.
|
|
|
|
###Benchmark - comparison with CGAL.
|
|
Since raw values arent saying much I've created the benchmark comparing this implementation against CGAL. code of the benchmark is available here: https://github.com/fulara/kdtree-benchmarks
|
|
```
|
|
Benchmark Time CPU Iterations
|
|
-----------------------------------------------------------------
|
|
Cgal_tree_buildup/10 2226 ns 2221 ns 313336
|
|
Cgal_tree_buildup/100 18357 ns 18315 ns 37968
|
|
Cgal_tree_buildup/1000 288135 ns 287345 ns 2369
|
|
Cgal_tree_buildup/9.76562k 3296740 ns 3290815 ns 211
|
|
Cgal_tree_buildup/97.6562k 42909150 ns 42813307 ns 12
|
|
Cgal_tree_buildup/976.562k 734566227 ns 733267760 ns 1
|
|
Cgal_tree_lookup/10 72 ns 72 ns 9392612
|
|
Cgal_tree_lookup/100 95 ns 95 ns 7103628
|
|
Cgal_tree_lookup/1000 174 ns 174 ns 4010773
|
|
Cgal_tree_lookup/9.76562k 268 ns 267 ns 2759487
|
|
Cgal_tree_lookup/97.6562k 881 ns 876 ns 1262454
|
|
Cgal_tree_lookup/976.562k 993 ns 991 ns 713751
|
|
Rust_tree_buildup/10 726 ns 724 ns 856791
|
|
Rust_tree_buildup/100 7103 ns 7092 ns 96132
|
|
Rust_tree_buildup/1000 84879 ns 84720 ns 7927
|
|
Rust_tree_buildup/9.76562k 1012983 ns 1010856 ns 630
|
|
Rust_tree_buildup/97.6562k 12406293 ns 12382399 ns 51
|
|
Rust_tree_buildup/976.562k 197175067 ns 196763387 ns 3
|
|
Rust_tree_lookup/10 62 ns 62 ns 11541505
|
|
Rust_tree_lookup/100 139 ns 139 ns 4058837
|
|
Rust_tree_lookup/1000 220 ns 220 ns 2890813
|
|
Rust_tree_lookup/9.76562k 307 ns 307 ns 2508133
|
|
Rust_tree_lookup/97.6562k 362 ns 362 ns 2035671
|
|
Rust_tree_lookup/976.562k 442 ns 441 ns 1636130
|
|
```
|
|
Rust_tree_lookup has some overhead since the libraries are being invoked from C code into Rust, and there is minor overhead of that in between, my experience indicates around 50 ns overhead.
|
|
|
|
##License
|
|
The Unlicense
|