mirror of
https://github.com/andreytkachenko/kdtree-rust.git
synced 2024-11-22 01:16:25 +04:00
add distance to results
This commit is contained in:
parent
caa2e5cbf8
commit
b67df3d4a1
@ -32,7 +32,7 @@ pub struct NearestNeighboursIter<'a, 'b, T> {
|
||||
impl<'a, 'b, T> Iterator for NearestNeighboursIter<'a, 'b, T>
|
||||
where T: KdTreePoint
|
||||
{
|
||||
type Item = &'a T;
|
||||
type Item = (f64, &'a T);
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let p = self.ref_node;
|
||||
@ -54,8 +54,9 @@ impl<'a, 'b, T> Iterator for NearestNeighboursIter<'a, 'b, T>
|
||||
self.node_stack.push(idx);
|
||||
}
|
||||
|
||||
if p.dist(&node.point) <= self.range {
|
||||
return Some(&node.point);
|
||||
let dist = p.dist(&node.point);
|
||||
if dist <= self.range {
|
||||
return Some((dist, &node.point));
|
||||
}
|
||||
} else if point_splitting_dim_value <= splitting_value {
|
||||
if let Some(idx) = node.left_node {
|
||||
@ -115,13 +116,13 @@ impl<KP: KdTreePoint> KdTree<KP> {
|
||||
self.rebuild_tree(&mut points);
|
||||
}
|
||||
|
||||
pub fn nearest_search(&self, node: &KP) -> KP {
|
||||
pub fn nearest_search(&self, node: &KP) -> (f64, &KP) {
|
||||
let mut nearest_neighbor = 0usize;
|
||||
let mut best_distance = self.nodes[0].point.dist(&node);
|
||||
|
||||
self.nearest_search_impl(node, 0usize, &mut best_distance, &mut nearest_neighbor);
|
||||
|
||||
self.nodes[nearest_neighbor].point
|
||||
(best_distance, &self.nodes[nearest_neighbor].point)
|
||||
}
|
||||
|
||||
pub fn nearest_search_dist<'a, 'b>(&'a self, node: &'b KP, dist: f64) -> NearestNeighboursIter<'a, 'b, KP> {
|
||||
@ -143,7 +144,7 @@ impl<KP: KdTreePoint> KdTree<KP> {
|
||||
}
|
||||
|
||||
pub fn distance_squared_to_nearest(&self, node: &KP) -> f64 {
|
||||
self.nearest_search(node).dist(&node)
|
||||
self.nearest_search(node).0
|
||||
}
|
||||
|
||||
pub fn insert_nodes_and_rebuild(&mut self, nodes_to_add : &mut [KP]) {
|
||||
@ -354,9 +355,9 @@ mod tests {
|
||||
let tree = KdTree::new(&mut point_vec.clone());
|
||||
|
||||
for p in &point_vec {
|
||||
let found_nn = tree.nearest_search(p);
|
||||
let found_nn = tree.nearest_search(p).1;
|
||||
|
||||
assert_eq!(p.id,found_nn.id);
|
||||
assert_eq!(p.id, found_nn.id);
|
||||
}
|
||||
|
||||
true
|
||||
|
@ -11,7 +11,7 @@ fn gen_random() -> f64 {
|
||||
rand::thread_rng().gen_range(0., 1000.)
|
||||
}
|
||||
|
||||
fn find_nn_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId) -> &Point3WithId {
|
||||
fn find_nn_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId) -> (f64, &Point3WithId) {
|
||||
let mut best_found_distance = squared_euclidean(find_for.dims(), points[0].dims());
|
||||
let mut closed_found_point = &points[0];
|
||||
|
||||
@ -24,17 +24,17 @@ fn find_nn_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3With
|
||||
}
|
||||
}
|
||||
|
||||
closed_found_point
|
||||
(best_found_distance, closed_found_point)
|
||||
}
|
||||
|
||||
fn find_neigbours_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId, dist: f64) -> Vec<&Point3WithId> {
|
||||
fn find_neigbours_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId, dist: f64) -> Vec<(f64, &Point3WithId)> {
|
||||
let mut result = Vec::new();
|
||||
|
||||
for p in points {
|
||||
let d = squared_euclidean(find_for.dims(), p.dims());
|
||||
|
||||
if d <= dist {
|
||||
result.push(p);
|
||||
result.push((d, p));
|
||||
}
|
||||
}
|
||||
|
||||
@ -64,7 +64,7 @@ fn test_against_1000_random_points() {
|
||||
for i in 0 .. point_count {
|
||||
let p = &points[i];
|
||||
|
||||
assert_eq!(p.id, tree.nearest_search(p).id );
|
||||
assert_eq!(p.id, tree.nearest_search(p).1.id );
|
||||
}
|
||||
|
||||
//test randomly generated points within the cube. and do the linear search. should match
|
||||
@ -74,7 +74,7 @@ fn test_against_1000_random_points() {
|
||||
let found_by_linear_search = find_nn_with_linear_search(&points, p);
|
||||
let point_found_by_kdtree = tree.nearest_search(&p);
|
||||
|
||||
assert_eq!(point_found_by_kdtree.id, found_by_linear_search.id);
|
||||
assert_eq!(point_found_by_kdtree.1.id, found_by_linear_search.1.id);
|
||||
}
|
||||
}
|
||||
|
||||
@ -97,14 +97,14 @@ fn test_incrementally_build_tree_against_built_at_once() {
|
||||
for i in 0 .. point_count {
|
||||
let p = &points[i];
|
||||
|
||||
assert_eq!(tree_built_at_once.nearest_search(p).id, tree_built_incrementally.nearest_search(p).id);
|
||||
assert_eq!(tree_built_at_once.nearest_search(p).1.id, tree_built_incrementally.nearest_search(p).1.id);
|
||||
}
|
||||
|
||||
|
||||
//test randomly generated points within the cube. and do the linear search. should match
|
||||
for _ in 0 .. 5000 {
|
||||
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
|
||||
assert_eq!(tree_built_at_once.nearest_search(&p).id, tree_built_incrementally.nearest_search(&p).id);
|
||||
assert_eq!(tree_built_at_once.nearest_search(&p).1.id, tree_built_incrementally.nearest_search(&p).1.id);
|
||||
}
|
||||
}
|
||||
|
||||
@ -125,8 +125,8 @@ fn test_neighbour_search_with_distance() {
|
||||
assert_eq!(found_by_linear_search.len(), point_found_by_kdtree.len());
|
||||
|
||||
if point_found_by_kdtree.len() > 0 {
|
||||
found_by_linear_search.sort_by(|a, b| a.id.cmp(&b.id));
|
||||
point_found_by_kdtree.sort_by(|a, b| a.id.cmp(&b.id));
|
||||
found_by_linear_search.sort_by(|a, b| a.1.id.cmp(&b.1.id));
|
||||
point_found_by_kdtree.sort_by(|a, b| a.1.id.cmp(&b.1.id));
|
||||
}
|
||||
|
||||
assert_eq!(point_found_by_kdtree, found_by_linear_search);
|
||||
|
Loading…
Reference in New Issue
Block a user