kdtree-rust/tests/integration_tests.rs
2018-12-10 18:54:14 +04:00

134 lines
4.0 KiB
Rust

extern crate kdtree;
extern crate rand;
use rand::Rng;
use kdtree::kdtree::test_common::*;
use kdtree::kdtree::KdTreePoint;
use kdtree::kdtree::distance::squared_euclidean;
fn gen_random() -> f64 {
rand::thread_rng().gen_range(0., 1000.)
}
fn find_nn_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId) -> (f64, &Point3WithId) {
let mut best_found_distance = squared_euclidean(find_for.dims(), points[0].dims());
let mut closed_found_point = &points[0];
for p in points {
let dist = squared_euclidean(find_for.dims(), p.dims());
if dist < best_found_distance {
best_found_distance = dist;
closed_found_point = &p;
}
}
(best_found_distance, closed_found_point)
}
fn find_neigbours_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId, dist: f64) -> Vec<(f64, &Point3WithId)> {
let mut result = Vec::new();
for p in points {
let d = squared_euclidean(find_for.dims(), p.dims());
if d <= dist {
result.push((d, p));
}
}
result
}
fn generate_points(point_count : usize) -> Vec<Point3WithId> {
let mut points : Vec<Point3WithId> = vec![];
for i in 0 .. point_count {
points.push(Point3WithId::new(i as i32, gen_random(),gen_random(),gen_random()));
}
points
}
#[test]
fn test_against_1000_random_points() {
let point_count = 1000usize;
let points = generate_points(point_count);
kdtree::kdtree::test_common::Point1WithId::new(0,0.);
let tree = kdtree::kdtree::KdTree::new(&mut points.clone());
//test points pushed into the tree, id should be equal.
for i in 0 .. point_count {
let p = &points[i];
assert_eq!(p.id, tree.nearest_search(p).1.id );
}
//test randomly generated points within the cube. and do the linear search. should match
for _ in 0 .. 500 {
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
let found_by_linear_search = find_nn_with_linear_search(&points, p);
let point_found_by_kdtree = tree.nearest_search(&p);
assert_eq!(point_found_by_kdtree.1.id, found_by_linear_search.1.id);
}
}
#[test]
fn test_incrementally_build_tree_against_built_at_once() {
let point_count = 2000usize;
let mut points = generate_points(point_count);
let tree_built_at_once = kdtree::kdtree::KdTree::new(&mut points.clone());
let mut tree_built_incrementally = kdtree::kdtree::KdTree::new(&mut points[0..1]);
for i in 1 .. point_count {
let p = &points[i];
tree_built_incrementally.insert_node(p.clone());
}
//test points pushed into the tree, id should be equal.
for i in 0 .. point_count {
let p = &points[i];
assert_eq!(tree_built_at_once.nearest_search(p).1.id, tree_built_incrementally.nearest_search(p).1.id);
}
//test randomly generated points within the cube. and do the linear search. should match
for _ in 0 .. 5000 {
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
assert_eq!(tree_built_at_once.nearest_search(&p).1.id, tree_built_incrementally.nearest_search(&p).1.id);
}
}
#[test]
fn test_neighbour_search_with_distance() {
let point_count = 1000usize;
let points = generate_points(point_count);
let tree = kdtree::kdtree::KdTree::new(&mut points.clone());
for _ in 0 .. 500 {
let dist = 100.0;
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
let mut found_by_linear_search = find_neigbours_with_linear_search(&points, p, dist * dist);
let mut point_found_by_kdtree: Vec<_> = tree.nearest_search_dist(&p, dist * dist).collect();
assert_eq!(found_by_linear_search.len(), point_found_by_kdtree.len());
if point_found_by_kdtree.len() > 0 {
found_by_linear_search.sort_by(|a, b| a.1.id.cmp(&b.1.id));
point_found_by_kdtree.sort_by(|a, b| a.1.id.cmp(&b.1.id));
}
assert_eq!(point_found_by_kdtree, found_by_linear_search);
}
}