1
0
mirror of https://github.com/rcore-os/rCore.git synced 2024-11-27 18:23:29 +04:00
rCore/docs/2_OSLab/g2/boot.md

219 lines
6.8 KiB
Markdown
Raw Normal View History

2018-12-31 12:20:39 +04:00
# 启动与初始化
2018-12-27 11:54:07 +04:00
2018-12-31 12:20:39 +04:00
## 树莓派启动流程
2018-12-27 11:54:07 +04:00
树莓派的启动流程如下:
1. 第一阶段:第一级 bootloader 位于片上 ROM 中,它挂载 SD 卡中的 FAT32 启动分区,并载入第二级 bootloader。
2. 第二阶段:第二级 bootloader 位于`bootcode.bin` 中,它将载入 GPU 固件代码,并启动 GPU进入第三级 bootloader。
3. GPU 固件:该阶段将运行 GPU 固件 `start.elf`,它会读取 `config.txt` 中的启动参数,并将内核镜像 `kernel8.img` 复制到 `0x80000` 上。
4. CPU 代码CPU 从 `0x80000` 处开始执行内核代码。
> 参考https://github.com/DieterReuter/workshop-raspberrypi-64bit-os/blob/master/part1-bootloader.md
## linker.ld
2018-12-31 13:23:11 +04:00
链接脚本位于 [kernel/src/arch/aarch64/boot/linker.ld](../../../kernel/src/arch/aarch64/boot/linker.ld),主要内容如下:
2018-12-27 11:54:07 +04:00
```
SECTIONS {
2018-12-31 18:51:13 +04:00
. = 0x80000; /* Raspbery Pi 3 AArch64 (kernel8.img) load address */
2018-12-27 11:54:07 +04:00
.boot : {
KEEP(*(.text.boot)) /* from boot.S */
}
. = 0x100000; /* Load the kernel at this address. It's also kernel stack top address */
bootstacktop = .;
.text : {
stext = .;
*(.text.entry)
*(.text .text.* .gnu.linkonce.t*)
. = ALIGN(4K);
etext = .;
}
/* ... */
}
```
几个要点:
* CPU 最先从 `.text.boot (0x80000)` 处开始执行。
2018-12-31 13:23:11 +04:00
* 在 [boot.S](../../../kernel/src/arch/aarch64/boot/boot.S) 中做好了必要的初始化后,将跳转到 `_start (0x100000)`,再从这里跳转到 Rust 代码 `rust_main()`
* [boot.S](../../../kernel/src/arch/aarch64/boot/boot.S) 的偏移为 `0x80000`Rust 代码的偏移为 `0x100000`
2018-12-27 11:54:07 +04:00
* 跳转到 `rust_main()` 后,`0x0~0x100000` 这段内存将被作为内核栈,大小为 1MB栈顶即 `bootstacktop (0x100000)`
2018-12-31 13:23:11 +04:00
* [boot.S](../../../kernel/src/arch/aarch64/boot/boot.S) 结束后还未启用 MMU可直接访问物理地址。
2018-12-27 11:54:07 +04:00
## boot.S
在 RustOS 中,内核将运行在 EL1 上,用户程序将运行在 EL0 上。
2018-12-31 18:51:13 +04:00
CPU 启动代码位于 [kernel/src/arch/aarch64/boot/boot.S](../../../kernel/src/arch/aarch64/boot/boot.S),负责初始化一些系统寄存器,并将当前异常级别切换到 EL1。
2018-12-31 13:23:11 +04:00
[boot.S](../../../kernel/src/arch/aarch64/boot/boot.S) 的主要流程如下:
2018-12-27 11:54:07 +04:00
1. 获取核的编号,目前只使用 0 号核,其余核将被闲置:
```armasm
.section .text.boot
boot:
# read cpu affinity, start core 0, halt rest
mrs x1, mpidr_el1
and x1, x1, #3
cbz x1, setup
halt:
# core affinity != 0, halt it
wfe
b halt
```
2. 读取当前异常级别:
2018-12-27 11:54:07 +04:00
```armasm
# read the current exception level into x0 (ref: C5.2.1)
mrs x0, CurrentEL
and x0, x0, #0b1100
lsr x0, x0, #2
```
3. 如果当前位于 EL3初始化一些 EL3 下的系统寄存器,并使用 `eret` 指令切换到 EL2
```armasm
switch_to_el2:
# switch to EL2 if we are in EL3. otherwise switch to EL1
cmp x0, #2
beq switch_to_el1
# set-up SCR_EL3 (bits 0, 4, 5, 7, 8, 10) (A53: 4.3.42)
mov x0, #0x5b1
msr scr_el3, x0
# set-up SPSR_EL3 (bits 0, 3, 6, 7, 8, 9) (ref: C5.2.20)
mov x0, #0x3c9
msr spsr_el3, x0
# switch
adr x0, switch_to_el1
msr elr_el3, x0
eret
```
4. 当前位于 EL2初值化 EL2 下的系统寄存器,并使用 `eret` 指令切换到 EL1
```armasm
switch_to_el1:
# switch to EL1 if we are not already in EL1. otherwise continue with start
cmp x0, #1
beq set_stack
# set the stack-pointer for EL1
msr sp_el1, x1
# set-up HCR_EL2, enable AArch64 in EL1 (bits 1, 31) (ref: D10.2.45)
mov x0, #0x0002
movk x0, #0x8000, lsl #16
msr hcr_el2, x0
# do not trap accessing SVE registers (ref: D10.2.30)
msr cptr_el2, xzr
# enable floating point and SVE (SIMD) (bits 20, 21) (ref: D10.2.29)
mrs x0, cpacr_el1
orr x0, x0, #(0x3 << 20)
msr cpacr_el1, x0
# Set SCTLR to known state (RES1: 11, 20, 22, 23, 28, 29) (ref: D10.2.100)
mov x0, #0x0800
movk x0, #0x30d0, lsl #16
msr sctlr_el1, x0
# set-up SPSR_EL2 (bits 0, 2, 6, 7, 8, 9) (ref: C5.2.19)
mov x0, #0x3c5
msr spsr_el2, x0
# enable CNTP for EL1/EL0 (ref: D7.5.2, D7.5.13)
# NOTE: This does not actually enable the counter stream.
mrs x0, cnthctl_el2
orr x0, x0, #3
msr cnthctl_el2, x0
msr cntvoff_el2, xzr
# switch
adr x0, set_stack
msr elr_el2, x0
eret
```
5. 当前位于 EL1设置栈顶地址为 `_start (0x100000)`,清空 BSS 段的数据:
```armasm
set_stack:
# set the current stack pointer
mov sp, x1
zero_bss:
# load the start address and number of bytes in BSS section
ldr x1, =sbss
ldr x2, =__bss_length
zero_bss_loop:
# zero out the BSS section, 64-bits at a time
cbz x2, zero_bss_loop_end
str xzr, [x1], #8
sub x2, x2, #8
cbnz x2, zero_bss_loop
zero_bss_loop_end:
b _start
```
6. 最后跳转到 Rust 代码 `rust_main()`
```armasm
.section .text.entry
.globl _start
_start:
# jump to rust_main, which should not return. halt if it does
bl rust_main
b halt
```
2018-12-31 12:20:39 +04:00
## rust_main
2018-12-31 13:23:11 +04:00
在 [boot.S](../../../kernel/src/arch/aarch64/boot/boot.S) 初始化完毕后,会进入 [kernel/src/arch/aarch64/mod.rs](../../../kernel/src/arch/aarch64/mod.rs#L19) 的 Rust 函数 `rust_main()`
2018-12-31 12:20:39 +04:00
```rust
/// The entry point of kernel
#[no_mangle] // don't mangle the name of this function
pub extern "C" fn rust_main() -> ! {
memory::init_mmu_early(); // Enable mmu and paging
board::init_serial_early();
crate::logging::init();
interrupt::init();
memory::init();
driver::init();
println!("{}", LOGO);
crate::process::init();
crate::kmain();
}
```
流程如下:
2019-01-02 15:15:47 +04:00
1. 建立临时页表,启动 MMU。
2. 初始化串口输入输出,可以使用 `println!()` 等宏了。
3. 初始化 logging 模块,可以使用 `info!()`、`error!()` 等宏了。
4. 初始化中断,其实就是设置了异常向量基址。
5. 初始化内存管理,包括物理页帧分配器与内核堆分配器,最后会建立一个新的页表重新映射内核。
6. 初始化其他设备驱动,包括 Frambuffer、Console、Timer。
7. 初始化进程管理,包括线程调度器、进程管理器,并为每个核建立一个 idle 线程,最后会加载 SFS 文件系统加入用户态 shell 进程。
2018-12-31 13:23:11 +04:00
8. 最后调用 `crate::kmain()`,按调度器轮流执行创建的线程。