bootloader | ||
easy-fs | ||
easy-fs-fuse | ||
os | ||
user | ||
.dockerignore | ||
.gitignore | ||
dev-env-info.md | ||
Dockerfile | ||
LICENSE | ||
Makefile | ||
README.md | ||
rust-toolchain | ||
setenv.sh |
rCore-Tutorial-v3
rCore-Tutorial version 3.5. See the Documentation in Chinese.
Official QQ group number: 735045051
news
- 2021.11.20: Now we are updating our labs. Please checkout chX-dev Branches for our current new labs. (Notice: please see the [Dependency] section in the end of this doc)
Overview
This project aims to show how to write an Unix-like OS running on RISC-V platforms from scratch in Rust for beginners without any background knowledge about computer architectures, assembly languages or operating systems.
Features
- Platform supported:
qemu-system-riscv64
simulator or dev boards based on Kendryte K210 SoC such as Maix Dock - OS
- concurrency of multiple processes each of which contains mutiple native threads
- preemptive scheduling(Round-Robin algorithm)
- dynamic memory management in kernel
- virtual memory
- a simple file system with a block cache
- an interactive shell in the userspace
- only 4K+ LoC
- A detailed documentation in Chinese in spite of the lack of comments in the code(English version is not available at present)
Prerequisites
Install Rust
See official guide.
Install some tools:
$ rustup target add riscv64gc-unknown-none-elf
$ cargo install cargo-binutils --vers =0.3.3
$ rustup component add llvm-tools-preview
$ rustup component add rust-src
Install Qemu
Here we manually compile and install Qemu 5.0.0. For example, on Ubuntu 18.04:
# install dependency packages
$ sudo apt install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev libgmp-dev \
gawk build-essential bison flex texinfo gperf libtool patchutils bc \
zlib1g-dev libexpat-dev pkg-config libglib2.0-dev libpixman-1-dev git tmux python3 python3-pip
# download Qemu source code
$ wget https://download.qemu.org/qemu-5.0.0.tar.xz
# extract to qemu-5.0.0/
$ tar xvJf qemu-5.0.0.tar.xz
$ cd qemu-5.0.0
# build
$ ./configure --target-list=riscv64-softmmu,riscv64-linux-user
$ make -j$(nproc)
Then, add following contents to ~/.bashrc
(please adjust these paths according to your environment):
export PATH=$PATH:/home/shinbokuow/Downloads/built/qemu-5.0.0
export PATH=$PATH:/home/shinbokuow/Downloads/built/qemu-5.0.0/riscv64-softmmu
export PATH=$PATH:/home/shinbokuow/Downloads/built/qemu-5.0.0/riscv64-linux-user
Finally, update the current shell:
$ source ~/.bashrc
Now we can check the version of Qemu:
$ qemu-system-riscv64 --version
QEMU emulator version 5.0.0
Copyright (c) 2003-2020 Fabrice Bellard and the QEMU Project developers
Install RISC-V GNU Embedded Toolchain(including GDB)
Download the compressed file according to your platform From Sifive website(Ctrl+F 'toolchain').
Extract it and append the location of the 'bin' directory under its root directory to $PATH
.
For example, we can check the version of GDB:
$ riscv64-unknown-elf-gdb --version
GNU gdb (SiFive GDB-Metal 10.1.0-2020.12.7) 10.1
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Install serial tools(Optional, if you want to run on K210)
$ pip3 install pyserial
$ sudo apt install python3-serial
Run our project
Qemu
$ git clone https://github.com/rcore-os/rCore-Tutorial-v3.git
$ cd rCore-Tutorial-v3/os
$ make run
After outputing some debug messages, the kernel lists all the applications available and enter the user shell:
/**** APPS ****
mpsc_sem
usertests
pipetest
forktest2
cat
initproc
race_adder_loop
threads_arg
race_adder_mutex_spin
race_adder_mutex_blocking
forktree
user_shell
huge_write
race_adder
race_adder_atomic
threads
stack_overflow
filetest_simple
forktest_simple
cmdline_args
run_pipe_test
forktest
matrix
exit
fantastic_text
sleep_simple
yield
hello_world
pipe_large_test
sleep
phil_din_mutex
**************/
Rust user shell
>>
You can run any application except for initproc
and user_shell
itself. To run an application, just input its filename and hit enter. usertests
can run a bunch of applications, thus it is recommended.
Type Ctrl+a
then x
to exit Qemu.
K210
Before chapter 6, you do not need a SD card:
$ git clone https://github.com/rcore-os/rCore-Tutorial-v3.git
$ cd rCore-Tutorial-v3/os
$ make run BOARD=k210
From chapter 6, before running the kernel, we should insert a SD card into PC and manually write the filesystem image to it:
$ cd rCore-Tutorial-v3/os
$ make sdcard
By default it will overwrite the device /dev/sdb
which is the SD card, but you can provide another location. For example, make sdcard SDCARD=/dev/sdc
.
After that, remove the SD card from PC and insert it to the slot of K210. Connect the K210 to PC and then:
$ git clone https://github.com/rcore-os/rCore-Tutorial-v3.git
$ cd rCore-Tutorial-v3/os
$ make run BOARD=k210
Type Ctrl+]
to disconnect from K210.
Working in progress
Our first release 3.5.0 (chapter 1-7) has been published.
There will be 9 chapters in our next release 3.6.0, where 2 new chapters will be added:
- chapter 8: synchronization on a uniprocessor
- chapter 9: I/O devices
Current version is 3.6.0-alpha.1 and we are still working on it.
Here are the updates since 3.5.0:
Completed
- automatically clean up and rebuild before running our project on a different platform
- fix
power
series application in early chapters, now you can find modulus in the output - use
UPSafeCell
instead ofRefCell
orspin::Mutex
in order to access static data structures and adjust its API so that it cannot be borrowed twice at a time(mention& .exclusive_access().task[0]
inrun_first_task
) - move
TaskContext
intoTaskControlBlock
instead of restoring it in place on kernel stack(since ch3), eliminating annoyingtask_cx_ptr2
- replace
llvm_asm!
withasm!
- expand the fs image size generated by
rcore-fs-fuse
to 128MiB - add a new test named
huge_write
which evaluates the fs performance(qemu~500KiB/s k210~50KiB/s) - flush all block cache to disk after a fs transaction which involves write operation
- replace
spin::Mutex
withUPSafeCell
before SMP chapter - add codes for a new chapter about synchronization & mutual exclusion(uniprocessor only)
- bug fix: we should call
find_pte
rather thanfind_pte_create
inPageTable::unmap
- clarify: "check validity of level-3 pte in
find_pte
instead of checking it outside this function" should not be a bug - code of chapter 8: synchronization on a uniprocessor
- switch the code of chapter 6 and chapter 7
Todo(High priority)
- review documentation, current progress: 5/9
- support signal mechanism in chapter 7
- code of chapter 9: device drivers based on interrupts, including UART and block devices
- use old fs image optionally, do not always rebuild the image
- add new system calls: getdents64/fstat
- shell functionality improvement(to be continued...)
- give every non-zero process exit code an unique and clear error type
- effective error handling of mm module
Todo(Low priority)
- rewrite practice doc and remove some inproper questions
- provide smooth debug experience at a Rust source code level
- format the code using official tools
- support other platforms
Crates
We will add them later.