1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
use super::id::RecycleAllocator;
use super::manager::insert_into_pid2process;
use super::TaskControlBlock;
use super::{add_task, SignalFlags};
use super::{pid_alloc, PidHandle};
use crate::fs::{File, Stdin, Stdout};
use crate::mm::{translated_refmut, MemorySet, KERNEL_SPACE};
use crate::sync::{Condvar, Mutex, Semaphore, UPIntrFreeCell, UPIntrRefMut};
use crate::trap::{trap_handler, TrapContext};
use alloc::string::String;
use alloc::sync::{Arc, Weak};
use alloc::vec;
use alloc::vec::Vec;

pub struct ProcessControlBlock {
    // immutable
    pub pid: PidHandle,
    // mutable
    inner: UPIntrFreeCell<ProcessControlBlockInner>,
}

pub struct ProcessControlBlockInner {
    pub is_zombie: bool,
    pub memory_set: MemorySet,
    pub parent: Option<Weak<ProcessControlBlock>>,
    pub children: Vec<Arc<ProcessControlBlock>>,
    pub exit_code: i32,
    pub fd_table: Vec<Option<Arc<dyn File + Send + Sync>>>,
    pub signals: SignalFlags,
    pub tasks: Vec<Option<Arc<TaskControlBlock>>>,
    pub task_res_allocator: RecycleAllocator,
    pub mutex_list: Vec<Option<Arc<dyn Mutex>>>,
    pub semaphore_list: Vec<Option<Arc<Semaphore>>>,
    pub condvar_list: Vec<Option<Arc<Condvar>>>,
}

impl ProcessControlBlockInner {
    #[allow(unused)]
    pub fn get_user_token(&self) -> usize {
        self.memory_set.token()
    }

    pub fn alloc_fd(&mut self) -> usize {
        if let Some(fd) = (0..self.fd_table.len()).find(|fd| self.fd_table[*fd].is_none()) {
            fd
        } else {
            self.fd_table.push(None);
            self.fd_table.len() - 1
        }
    }

    pub fn alloc_tid(&mut self) -> usize {
        self.task_res_allocator.alloc()
    }

    pub fn dealloc_tid(&mut self, tid: usize) {
        self.task_res_allocator.dealloc(tid)
    }

    pub fn thread_count(&self) -> usize {
        self.tasks.len()
    }

    pub fn get_task(&self, tid: usize) -> Arc<TaskControlBlock> {
        self.tasks[tid].as_ref().unwrap().clone()
    }
}

impl ProcessControlBlock {
    pub fn inner_exclusive_access(&self) -> UPIntrRefMut<'_, ProcessControlBlockInner> {
        self.inner.exclusive_access()
    }

    pub fn new(elf_data: &[u8]) -> Arc<Self> {
        // memory_set with elf program headers/trampoline/trap context/user stack
        let (memory_set, ustack_base, entry_point) = MemorySet::from_elf(elf_data);
        // allocate a pid
        let pid_handle = pid_alloc();
        let process = Arc::new(Self {
            pid: pid_handle,
            inner: unsafe {
                UPIntrFreeCell::new(ProcessControlBlockInner {
                    is_zombie: false,
                    memory_set,
                    parent: None,
                    children: Vec::new(),
                    exit_code: 0,
                    fd_table: vec![
                        // 0 -> stdin
                        Some(Arc::new(Stdin)),
                        // 1 -> stdout
                        Some(Arc::new(Stdout)),
                        // 2 -> stderr
                        Some(Arc::new(Stdout)),
                    ],
                    signals: SignalFlags::empty(),
                    tasks: Vec::new(),
                    task_res_allocator: RecycleAllocator::new(),
                    mutex_list: Vec::new(),
                    semaphore_list: Vec::new(),
                    condvar_list: Vec::new(),
                })
            },
        });
        // create a main thread, we should allocate ustack and trap_cx here
        let task = Arc::new(TaskControlBlock::new(
            Arc::clone(&process),
            ustack_base,
            true,
        ));
        // prepare trap_cx of main thread
        let task_inner = task.inner_exclusive_access();
        let trap_cx = task_inner.get_trap_cx();
        let ustack_top = task_inner.res.as_ref().unwrap().ustack_top();
        let kstack_top = task.kstack.get_top();
        drop(task_inner);
        *trap_cx = TrapContext::app_init_context(
            entry_point,
            ustack_top,
            KERNEL_SPACE.exclusive_access().token(),
            kstack_top,
            trap_handler as usize,
        );
        // add main thread to the process
        let mut process_inner = process.inner_exclusive_access();
        process_inner.tasks.push(Some(Arc::clone(&task)));
        drop(process_inner);
        insert_into_pid2process(process.getpid(), Arc::clone(&process));
        // add main thread to scheduler
        add_task(task);
        process
    }

    /// Only support processes with a single thread.
    pub fn exec(self: &Arc<Self>, elf_data: &[u8], args: Vec<String>) {
        assert_eq!(self.inner_exclusive_access().thread_count(), 1);
        // memory_set with elf program headers/trampoline/trap context/user stack
        let (memory_set, ustack_base, entry_point) = MemorySet::from_elf(elf_data);
        let new_token = memory_set.token();
        // substitute memory_set
        self.inner_exclusive_access().memory_set = memory_set;
        // then we alloc user resource for main thread again
        // since memory_set has been changed
        let task = self.inner_exclusive_access().get_task(0);
        let mut task_inner = task.inner_exclusive_access();
        task_inner.res.as_mut().unwrap().ustack_base = ustack_base;
        task_inner.res.as_mut().unwrap().alloc_user_res();
        task_inner.trap_cx_ppn = task_inner.res.as_mut().unwrap().trap_cx_ppn();
        // push arguments on user stack
        let mut user_sp = task_inner.res.as_mut().unwrap().ustack_top();
        user_sp -= (args.len() + 1) * core::mem::size_of::<usize>();
        let argv_base = user_sp;
        let mut argv: Vec<_> = (0..=args.len())
            .map(|arg| {
                translated_refmut(
                    new_token,
                    (argv_base + arg * core::mem::size_of::<usize>()) as *mut usize,
                )
            })
            .collect();
        *argv[args.len()] = 0;
        for i in 0..args.len() {
            user_sp -= args[i].len() + 1;
            *argv[i] = user_sp;
            let mut p = user_sp;
            for c in args[i].as_bytes() {
                *translated_refmut(new_token, p as *mut u8) = *c;
                p += 1;
            }
            *translated_refmut(new_token, p as *mut u8) = 0;
        }
        // make the user_sp aligned to 8B for k210 platform
        user_sp -= user_sp % core::mem::size_of::<usize>();
        // initialize trap_cx
        let mut trap_cx = TrapContext::app_init_context(
            entry_point,
            user_sp,
            KERNEL_SPACE.exclusive_access().token(),
            task.kstack.get_top(),
            trap_handler as usize,
        );
        trap_cx.x[10] = args.len();
        trap_cx.x[11] = argv_base;
        *task_inner.get_trap_cx() = trap_cx;
    }

    /// Only support processes with a single thread.
    pub fn fork(self: &Arc<Self>) -> Arc<Self> {
        let mut parent = self.inner_exclusive_access();
        assert_eq!(parent.thread_count(), 1);
        // clone parent's memory_set completely including trampoline/ustacks/trap_cxs
        let memory_set = MemorySet::from_existed_user(&parent.memory_set);
        // alloc a pid
        let pid = pid_alloc();
        // copy fd table
        let mut new_fd_table: Vec<Option<Arc<dyn File + Send + Sync>>> = Vec::new();
        for fd in parent.fd_table.iter() {
            if let Some(file) = fd {
                new_fd_table.push(Some(file.clone()));
            } else {
                new_fd_table.push(None);
            }
        }
        // create child process pcb
        let child = Arc::new(Self {
            pid,
            inner: unsafe {
                UPIntrFreeCell::new(ProcessControlBlockInner {
                    is_zombie: false,
                    memory_set,
                    parent: Some(Arc::downgrade(self)),
                    children: Vec::new(),
                    exit_code: 0,
                    fd_table: new_fd_table,
                    signals: SignalFlags::empty(),
                    tasks: Vec::new(),
                    task_res_allocator: RecycleAllocator::new(),
                    mutex_list: Vec::new(),
                    semaphore_list: Vec::new(),
                    condvar_list: Vec::new(),
                })
            },
        });
        // add child
        parent.children.push(Arc::clone(&child));
        // create main thread of child process
        let task = Arc::new(TaskControlBlock::new(
            Arc::clone(&child),
            parent
                .get_task(0)
                .inner_exclusive_access()
                .res
                .as_ref()
                .unwrap()
                .ustack_base(),
            // here we do not allocate trap_cx or ustack again
            // but mention that we allocate a new kstack here
            false,
        ));
        // attach task to child process
        let mut child_inner = child.inner_exclusive_access();
        child_inner.tasks.push(Some(Arc::clone(&task)));
        drop(child_inner);
        // modify kstack_top in trap_cx of this thread
        let task_inner = task.inner_exclusive_access();
        let trap_cx = task_inner.get_trap_cx();
        trap_cx.kernel_sp = task.kstack.get_top();
        drop(task_inner);
        insert_into_pid2process(child.getpid(), Arc::clone(&child));
        // add this thread to scheduler
        add_task(task);
        child
    }

    pub fn getpid(&self) -> usize {
        self.pid.0
    }
}