1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
mod action;
mod context;
mod manager;
mod pid;
mod processor;
mod signal;
mod switch;
#[allow(clippy::module_inception)]
mod task;

use crate::fs::{open_file, OpenFlags};
use alloc::sync::Arc;
pub use context::TaskContext;
use lazy_static::*;
use manager::fetch_task;
use manager::remove_from_pid2task;
use switch::__switch;
use task::{TaskControlBlock, TaskStatus};

pub use action::{SignalAction, SignalActions};
pub use manager::{add_task, pid2task};
pub use pid::{pid_alloc, KernelStack, PidHandle};
pub use processor::{
    current_task, current_trap_cx, current_user_token, run_tasks, schedule, take_current_task,
};
pub use signal::{SignalFlags, MAX_SIG};

pub fn suspend_current_and_run_next() {
    // There must be an application running.
    let task = take_current_task().unwrap();

    // ---- access current TCB exclusively
    let mut task_inner = task.inner_exclusive_access();
    let task_cx_ptr = &mut task_inner.task_cx as *mut TaskContext;
    // Change status to Ready
    task_inner.task_status = TaskStatus::Ready;
    drop(task_inner);
    // ---- release current PCB

    // push back to ready queue.
    add_task(task);
    // jump to scheduling cycle
    schedule(task_cx_ptr);
}

/// pid of usertests app in make run TEST=1
pub const IDLE_PID: usize = 0;

#[cfg(feature = "board_qemu")]
use crate::board::QEMUExit;

/// Exit the current 'Running' task and run the next task in task list.
pub fn exit_current_and_run_next(exit_code: i32) {
    // take from Processor
    let task = take_current_task().unwrap();

    #[cfg(feature = "board_qemu")]
    let pid = task.getpid();
    #[cfg(feature = "board_qemu")]
    if pid == IDLE_PID {
        println!(
            "[kernel] Idle process exit with exit_code {} ...",
            exit_code
        );
        if exit_code != 0 {
            //crate::sbi::shutdown(255); //255 == -1 for err hint
            crate::board::QEMU_EXIT_HANDLE.exit_failure();
        } else {
            //crate::sbi::shutdown(0); //0 for success hint
            crate::board::QEMU_EXIT_HANDLE.exit_success();
        }
    }

    // remove from pid2task
    remove_from_pid2task(task.getpid());
    // **** access current TCB exclusively
    let mut inner = task.inner_exclusive_access();
    // Change status to Zombie
    inner.task_status = TaskStatus::Zombie;
    // Record exit code
    inner.exit_code = exit_code;
    // do not move to its parent but under initproc

    // ++++++ access initproc TCB exclusively
    {
        let mut initproc_inner = INITPROC.inner_exclusive_access();
        for child in inner.children.iter() {
            child.inner_exclusive_access().parent = Some(Arc::downgrade(&INITPROC));
            initproc_inner.children.push(child.clone());
        }
    }
    // ++++++ release parent PCB

    inner.children.clear();
    // deallocate user space
    inner.memory_set.recycle_data_pages();
    // drop file descriptors
    inner.fd_table.clear();
    drop(inner);
    // **** release current PCB
    // drop task manually to maintain rc correctly
    drop(task);
    // we do not have to save task context
    let mut _unused = TaskContext::zero_init();
    schedule(&mut _unused as *mut _);
}

lazy_static! {
    pub static ref INITPROC: Arc<TaskControlBlock> = Arc::new({
        let inode = open_file("initproc", OpenFlags::RDONLY).unwrap();
        let v = inode.read_all();
        TaskControlBlock::new(v.as_slice())
    });
}

pub fn add_initproc() {
    add_task(INITPROC.clone());
}

pub fn check_signals_error_of_current() -> Option<(i32, &'static str)> {
    let task = current_task().unwrap();
    let task_inner = task.inner_exclusive_access();
    // println!(
    //     "[K] check_signals_error_of_current {:?}",
    //     task_inner.signals
    // );
    task_inner.signals.check_error()
}

pub fn current_add_signal(signal: SignalFlags) {
    let task = current_task().unwrap();
    let mut task_inner = task.inner_exclusive_access();
    task_inner.signals |= signal;
    // println!(
    //     "[K] current_add_signal:: current task sigflag {:?}",
    //     task_inner.signals
    // );
}

fn call_kernel_signal_handler(signal: SignalFlags) {
    let task = current_task().unwrap();
    let mut task_inner = task.inner_exclusive_access();
    match signal {
        SignalFlags::SIGSTOP => {
            task_inner.frozen = true;
            task_inner.signals ^= SignalFlags::SIGSTOP;
        }
        SignalFlags::SIGCONT => {
            if task_inner.signals.contains(SignalFlags::SIGCONT) {
                task_inner.signals ^= SignalFlags::SIGCONT;
                task_inner.frozen = false;
            }
        }
        _ => {
            // println!(
            //     "[K] call_kernel_signal_handler:: current task sigflag {:?}",
            //     task_inner.signals
            // );
            task_inner.killed = true;
        }
    }
}

fn call_user_signal_handler(sig: usize, signal: SignalFlags) {
    let task = current_task().unwrap();
    let mut task_inner = task.inner_exclusive_access();

    let handler = task_inner.signal_actions.table[sig].handler;
    if handler != 0 {
        // user handler

        // change current mask
        task_inner.signal_mask = task_inner.signal_actions.table[sig].mask;
        // handle flag
        task_inner.handling_sig = sig as isize;
        task_inner.signals ^= signal;

        // backup trapframe
        let mut trap_ctx = task_inner.get_trap_cx();
        task_inner.trap_ctx_backup = Some(*trap_ctx);

        // modify trapframe
        trap_ctx.sepc = handler;

        // put args (a0)
        trap_ctx.x[10] = sig;
    } else {
        // default action
        println!("[K] task/call_user_signal_handler: default action: ignore it or kill process");
    }
}

fn check_pending_signals() {
    for sig in 0..(MAX_SIG + 1) {
        let task = current_task().unwrap();
        let task_inner = task.inner_exclusive_access();
        let signal = SignalFlags::from_bits(1 << sig).unwrap();
        if task_inner.signals.contains(signal) && (!task_inner.signal_mask.contains(signal)) {
            if task_inner.handling_sig == -1 {
                drop(task_inner);
                drop(task);
                if signal == SignalFlags::SIGKILL
                    || signal == SignalFlags::SIGSTOP
                    || signal == SignalFlags::SIGCONT
                    || signal == SignalFlags::SIGDEF
                {
                    // signal is a kernel signal
                    call_kernel_signal_handler(signal);
                } else {
                    // signal is a user signal
                    call_user_signal_handler(sig, signal);
                    return;
                }
            } else {
                if !task_inner.signal_actions.table[task_inner.handling_sig as usize]
                    .mask
                    .contains(signal)
                {
                    drop(task_inner);
                    drop(task);
                    if signal == SignalFlags::SIGKILL
                        || signal == SignalFlags::SIGSTOP
                        || signal == SignalFlags::SIGCONT
                        || signal == SignalFlags::SIGDEF
                    {
                        // signal is a kernel signal
                        call_kernel_signal_handler(signal);
                    } else {
                        // signal is a user signal
                        call_user_signal_handler(sig, signal);
                        return;
                    }
                }
            }
        }
    }
}

pub fn handle_signals() {
    check_pending_signals();
    loop {
        let task = current_task().unwrap();
        let task_inner = task.inner_exclusive_access();
        let frozen_flag = task_inner.frozen;
        let killed_flag = task_inner.killed;
        drop(task_inner);
        drop(task);
        if (!frozen_flag) || killed_flag {
            break;
        }
        check_pending_signals();
        suspend_current_and_run_next()
    }
}