1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//!Implementation of [`TaskControlBlock`]
use super::TaskContext;
use super::{pid_alloc, KernelStack, PidHandle};
use crate::config::TRAP_CONTEXT;
use crate::mm::{MemorySet, PhysPageNum, VirtAddr, KERNEL_SPACE};
use crate::sync::UPSafeCell;
use crate::trap::{trap_handler, TrapContext};
use alloc::sync::{Arc, Weak};
use alloc::vec::Vec;
use core::cell::RefMut;

pub struct TaskControlBlock {
    // immutable
    pub pid: PidHandle,
    pub kernel_stack: KernelStack,
    // mutable
    inner: UPSafeCell<TaskControlBlockInner>,
}

pub struct TaskControlBlockInner {
    pub trap_cx_ppn: PhysPageNum,
    pub base_size: usize,
    pub task_cx: TaskContext,
    pub task_status: TaskStatus,
    pub memory_set: MemorySet,
    pub parent: Option<Weak<TaskControlBlock>>,
    pub children: Vec<Arc<TaskControlBlock>>,
    pub exit_code: i32,
}

impl TaskControlBlockInner {
    /*
    pub fn get_task_cx_ptr2(&self) -> *const usize {
        &self.task_cx_ptr as *const usize
    }
    */
    pub fn get_trap_cx(&self) -> &'static mut TrapContext {
        self.trap_cx_ppn.get_mut()
    }
    pub fn get_user_token(&self) -> usize {
        self.memory_set.token()
    }
    fn get_status(&self) -> TaskStatus {
        self.task_status
    }
    pub fn is_zombie(&self) -> bool {
        self.get_status() == TaskStatus::Zombie
    }
}

impl TaskControlBlock {
    pub fn inner_exclusive_access(&self) -> RefMut<'_, TaskControlBlockInner> {
        self.inner.exclusive_access()
    }
    pub fn new(elf_data: &[u8]) -> Self {
        // memory_set with elf program headers/trampoline/trap context/user stack
        let (memory_set, user_sp, entry_point) = MemorySet::from_elf(elf_data);
        let trap_cx_ppn = memory_set
            .translate(VirtAddr::from(TRAP_CONTEXT).into())
            .unwrap()
            .ppn();
        // alloc a pid and a kernel stack in kernel space
        let pid_handle = pid_alloc();
        let kernel_stack = KernelStack::new(&pid_handle);
        let kernel_stack_top = kernel_stack.get_top();
        // push a task context which goes to trap_return to the top of kernel stack
        let task_control_block = Self {
            pid: pid_handle,
            kernel_stack,
            inner: unsafe {
                UPSafeCell::new(TaskControlBlockInner {
                    trap_cx_ppn,
                    base_size: user_sp,
                    task_cx: TaskContext::goto_trap_return(kernel_stack_top),
                    task_status: TaskStatus::Ready,
                    memory_set,
                    parent: None,
                    children: Vec::new(),
                    exit_code: 0,
                })
            },
        };
        // prepare TrapContext in user space
        let trap_cx = task_control_block.inner_exclusive_access().get_trap_cx();
        *trap_cx = TrapContext::app_init_context(
            entry_point,
            user_sp,
            KERNEL_SPACE.exclusive_access().token(),
            kernel_stack_top,
            trap_handler as usize,
        );
        task_control_block
    }
    pub fn exec(&self, elf_data: &[u8]) {
        // memory_set with elf program headers/trampoline/trap context/user stack
        let (memory_set, user_sp, entry_point) = MemorySet::from_elf(elf_data);
        let trap_cx_ppn = memory_set
            .translate(VirtAddr::from(TRAP_CONTEXT).into())
            .unwrap()
            .ppn();

        // **** access inner exclusively
        let mut inner = self.inner_exclusive_access();
        // substitute memory_set
        inner.memory_set = memory_set;
        // update trap_cx ppn
        inner.trap_cx_ppn = trap_cx_ppn;
        // initialize trap_cx
        let trap_cx = inner.get_trap_cx();
        *trap_cx = TrapContext::app_init_context(
            entry_point,
            user_sp,
            KERNEL_SPACE.exclusive_access().token(),
            self.kernel_stack.get_top(),
            trap_handler as usize,
        );
        // **** release inner automatically
    }
    pub fn fork(self: &Arc<TaskControlBlock>) -> Arc<TaskControlBlock> {
        // ---- access parent PCB exclusively
        let mut parent_inner = self.inner_exclusive_access();
        // copy user space(include trap context)
        let memory_set = MemorySet::from_existed_user(&parent_inner.memory_set);
        let trap_cx_ppn = memory_set
            .translate(VirtAddr::from(TRAP_CONTEXT).into())
            .unwrap()
            .ppn();
        // alloc a pid and a kernel stack in kernel space
        let pid_handle = pid_alloc();
        let kernel_stack = KernelStack::new(&pid_handle);
        let kernel_stack_top = kernel_stack.get_top();
        let task_control_block = Arc::new(TaskControlBlock {
            pid: pid_handle,
            kernel_stack,
            inner: unsafe {
                UPSafeCell::new(TaskControlBlockInner {
                    trap_cx_ppn,
                    base_size: parent_inner.base_size,
                    task_cx: TaskContext::goto_trap_return(kernel_stack_top),
                    task_status: TaskStatus::Ready,
                    memory_set,
                    parent: Some(Arc::downgrade(self)),
                    children: Vec::new(),
                    exit_code: 0,
                })
            },
        });
        // add child
        parent_inner.children.push(task_control_block.clone());
        // modify kernel_sp in trap_cx
        // **** access children PCB exclusively
        let trap_cx = task_control_block.inner_exclusive_access().get_trap_cx();
        trap_cx.kernel_sp = kernel_stack_top;
        // return
        task_control_block
        // ---- release parent PCB automatically
        // **** release children PCB automatically
    }
    pub fn getpid(&self) -> usize {
        self.pid.0
    }
}

#[derive(Copy, Clone, PartialEq)]
pub enum TaskStatus {
    Ready,
    Running,
    Zombie,
}