1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
//! Task management implementation
//!
//! Everything about task management, like starting and switching tasks is
//! implemented here.
//!
//! A single global instance of [`TaskManager`] called `TASK_MANAGER` controls
//! all the tasks in the whole operating system.
//!
//! A single global instance of [`Processor`] called `PROCESSOR` monitors running
//! task(s) for each core.
//!
//! A single global instance of [`PidAllocator`] called `PID_ALLOCATOR` allocates
//! pid for user apps.
//!
//! Be careful when you see `__switch` ASM function in `switch.S`. Control flow around this function
//! might not be what you expect.
mod context;
mod manager;
mod pid;
mod processor;
mod switch;
#[allow(clippy::module_inception)]
#[allow(rustdoc::private_intra_doc_links)]
mod task;
use crate::fs::{open_file, OpenFlags};
use crate::sbi::shutdown;
use alloc::sync::Arc;
pub use context::TaskContext;
use lazy_static::*;
pub use manager::{fetch_task, TaskManager};
use switch::__switch;
use task::{TaskControlBlock, TaskStatus};
pub use manager::add_task;
pub use pid::{pid_alloc, KernelStack, PidAllocator, PidHandle};
pub use processor::{
current_task, current_trap_cx, current_user_token, run_tasks, schedule, take_current_task,
Processor,
};
/// Suspend the current 'Running' task and run the next task in task list.
pub fn suspend_current_and_run_next() {
// There must be an application running.
let task = take_current_task().unwrap();
// ---- access current TCB exclusively
let mut task_inner = task.inner_exclusive_access();
let task_cx_ptr = &mut task_inner.task_cx as *mut TaskContext;
// Change status to Ready
task_inner.task_status = TaskStatus::Ready;
drop(task_inner);
// ---- release current PCB
// push back to ready queue.
add_task(task);
// jump to scheduling cycle
schedule(task_cx_ptr);
}
/// pid of usertests app in make run TEST=1
pub const IDLE_PID: usize = 0;
/// Exit the current 'Running' task and run the next task in task list.
pub fn exit_current_and_run_next(exit_code: i32) {
// take from Processor
let task = take_current_task().unwrap();
let pid = task.getpid();
if pid == IDLE_PID {
println!(
"[kernel] Idle process exit with exit_code {} ...",
exit_code
);
if exit_code != 0 {
//crate::sbi::shutdown(255); //255 == -1 for err hint
shutdown(true)
} else {
//crate::sbi::shutdown(0); //0 for success hint
shutdown(false)
}
}
// **** access current TCB exclusively
let mut inner = task.inner_exclusive_access();
// Change status to Zombie
inner.task_status = TaskStatus::Zombie;
// Record exit code
inner.exit_code = exit_code;
// do not move to its parent but under initproc
// ++++++ access initproc TCB exclusively
{
let mut initproc_inner = INITPROC.inner_exclusive_access();
for child in inner.children.iter() {
child.inner_exclusive_access().parent = Some(Arc::downgrade(&INITPROC));
initproc_inner.children.push(child.clone());
}
}
// ++++++ release parent PCB
inner.children.clear();
// deallocate user space
inner.memory_set.recycle_data_pages();
drop(inner);
// **** release current PCB
// drop task manually to maintain rc correctly
drop(task);
// we do not have to save task context
let mut _unused = TaskContext::zero_init();
schedule(&mut _unused as *mut _);
}
lazy_static! {
///Globle process that init user shell
pub static ref INITPROC: Arc<TaskControlBlock> = Arc::new({
let inode = open_file("initproc", OpenFlags::RDONLY).unwrap();
let v = inode.read_all();
TaskControlBlock::new(v.as_slice())
});
}
///Add init process to the manager
pub fn add_initproc() {
add_task(INITPROC.clone());
}