1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
//! Task management implementation
//!
//! Everything about task management, like starting and switching tasks is
//! implemented here.
//!
//! A single global instance of [`TaskManager`] called `TASK_MANAGER` controls
//! all the tasks in the operating system.
//!
//! Be careful when you see `__switch` ASM function in `switch.S`. Control flow around this function
//! might not be what you expect.
mod context;
mod switch;
#[allow(clippy::module_inception)]
mod task;
use crate::loader::{get_app_data, get_num_app};
use crate::sbi::shutdown;
use crate::sync::UPSafeCell;
use crate::trap::TrapContext;
use alloc::vec::Vec;
use lazy_static::*;
use switch::__switch;
use task::{TaskControlBlock, TaskStatus};
pub use context::TaskContext;
/// The task manager, where all the tasks are managed.
///
/// Functions implemented on `TaskManager` deals with all task state transitions
/// and task context switching. For convenience, you can find wrappers around it
/// in the module level.
///
/// Most of `TaskManager` are hidden behind the field `inner`, to defer
/// borrowing checks to runtime. You can see examples on how to use `inner` in
/// existing functions on `TaskManager`.
pub struct TaskManager {
/// total number of tasks
num_app: usize,
/// use inner value to get mutable access
inner: UPSafeCell<TaskManagerInner>,
}
/// The task manager inner in 'UPSafeCell'
struct TaskManagerInner {
/// task list
tasks: Vec<TaskControlBlock>,
/// id of current `Running` task
current_task: usize,
}
lazy_static! {
/// a `TaskManager` global instance through lazy_static!
pub static ref TASK_MANAGER: TaskManager = {
println!("init TASK_MANAGER");
let num_app = get_num_app();
println!("num_app = {}", num_app);
let mut tasks: Vec<TaskControlBlock> = Vec::new();
for i in 0..num_app {
tasks.push(TaskControlBlock::new(get_app_data(i), i));
}
TaskManager {
num_app,
inner: unsafe {
UPSafeCell::new(TaskManagerInner {
tasks,
current_task: 0,
})
},
}
};
}
impl TaskManager {
/// Run the first task in task list.
///
/// Generally, the first task in task list is an idle task (we call it zero process later).
/// But in ch4, we load apps statically, so the first task is a real app.
fn run_first_task(&self) -> ! {
let mut inner = self.inner.exclusive_access();
let next_task = &mut inner.tasks[0];
next_task.task_status = TaskStatus::Running;
let next_task_cx_ptr = &next_task.task_cx as *const TaskContext;
drop(inner);
let mut _unused = TaskContext::zero_init();
// before this, we should drop local variables that must be dropped manually
unsafe {
__switch(&mut _unused as *mut _, next_task_cx_ptr);
}
panic!("unreachable in run_first_task!");
}
/// Change the status of current `Running` task into `Ready`.
fn mark_current_suspended(&self) {
let mut inner = self.inner.exclusive_access();
let cur = inner.current_task;
inner.tasks[cur].task_status = TaskStatus::Ready;
}
/// Change the status of current `Running` task into `Exited`.
fn mark_current_exited(&self) {
let mut inner = self.inner.exclusive_access();
let cur = inner.current_task;
inner.tasks[cur].task_status = TaskStatus::Exited;
}
/// Find next task to run and return task id.
///
/// In this case, we only return the first `Ready` task in task list.
fn find_next_task(&self) -> Option<usize> {
let inner = self.inner.exclusive_access();
let current = inner.current_task;
(current + 1..current + self.num_app + 1)
.map(|id| id % self.num_app)
.find(|id| inner.tasks[*id].task_status == TaskStatus::Ready)
}
/// Get the current 'Running' task's token.
fn get_current_token(&self) -> usize {
let inner = self.inner.exclusive_access();
inner.tasks[inner.current_task].get_user_token()
}
/// Get the current 'Running' task's trap contexts.
fn get_current_trap_cx(&self) -> &'static mut TrapContext {
let inner = self.inner.exclusive_access();
inner.tasks[inner.current_task].get_trap_cx()
}
/// Change the current 'Running' task's program break
pub fn change_current_program_brk(&self, size: i32) -> Option<usize> {
let mut inner = self.inner.exclusive_access();
let cur = inner.current_task;
inner.tasks[cur].change_program_brk(size)
}
/// Switch current `Running` task to the task we have found,
/// or there is no `Ready` task and we can exit with all applications completed
fn run_next_task(&self) {
if let Some(next) = self.find_next_task() {
let mut inner = self.inner.exclusive_access();
let current = inner.current_task;
inner.tasks[next].task_status = TaskStatus::Running;
inner.current_task = next;
let current_task_cx_ptr = &mut inner.tasks[current].task_cx as *mut TaskContext;
let next_task_cx_ptr = &inner.tasks[next].task_cx as *const TaskContext;
drop(inner);
// before this, we should drop local variables that must be dropped manually
unsafe {
__switch(current_task_cx_ptr, next_task_cx_ptr);
}
// go back to user mode
} else {
println!("All applications completed!");
shutdown(false);
}
}
}
/// Run the first task in task list.
pub fn run_first_task() {
TASK_MANAGER.run_first_task();
}
/// Switch current `Running` task to the task we have found,
/// or there is no `Ready` task and we can exit with all applications completed
fn run_next_task() {
TASK_MANAGER.run_next_task();
}
/// Change the status of current `Running` task into `Ready`.
fn mark_current_suspended() {
TASK_MANAGER.mark_current_suspended();
}
/// Change the status of current `Running` task into `Exited`.
fn mark_current_exited() {
TASK_MANAGER.mark_current_exited();
}
/// Suspend the current 'Running' task and run the next task in task list.
pub fn suspend_current_and_run_next() {
mark_current_suspended();
run_next_task();
}
/// Exit the current 'Running' task and run the next task in task list.
pub fn exit_current_and_run_next() {
mark_current_exited();
run_next_task();
}
/// Get the current 'Running' task's token.
pub fn current_user_token() -> usize {
TASK_MANAGER.get_current_token()
}
/// Get the current 'Running' task's trap contexts.
pub fn current_trap_cx() -> &'static mut TrapContext {
TASK_MANAGER.get_current_trap_cx()
}
/// Change the current 'Running' task's program break
pub fn change_program_brk(size: i32) -> Option<usize> {
TASK_MANAGER.change_current_program_brk(size)
}