mirror of
https://github.com/rcore-os/rCore-Tutorial-v3.git
synced 2024-11-22 09:26:26 +04:00
add #![deny(missing_docs)] AND #![deny(warnings)] in main.rs, and update other files
This commit is contained in:
parent
abc9703718
commit
8cc21841aa
1
.gitignore
vendored
1
.gitignore
vendored
@ -15,3 +15,4 @@ easy-fs-fuse/Cargo.lock
|
||||
easy-fs-fuse/target/*
|
||||
tools/
|
||||
pushall.sh
|
||||
*.bak
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Constants used in rCore
|
||||
|
||||
pub const USER_STACK_SIZE: usize = 4096 * 2;
|
||||
pub const KERNEL_STACK_SIZE: usize = 4096 * 2;
|
||||
pub const MAX_APP_NUM: usize = 4;
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! SBI console driver, for text output
|
||||
|
||||
use crate::sbi::console_putchar;
|
||||
use core::fmt::{self, Write};
|
||||
|
||||
@ -16,6 +18,7 @@ pub fn print(args: fmt::Arguments) {
|
||||
Stdout.write_fmt(args).unwrap();
|
||||
}
|
||||
|
||||
/// print string macro
|
||||
#[macro_export]
|
||||
macro_rules! print {
|
||||
($fmt: literal $(, $($arg: tt)+)?) => {
|
||||
@ -23,6 +26,7 @@ macro_rules! print {
|
||||
}
|
||||
}
|
||||
|
||||
/// println string macro
|
||||
#[macro_export]
|
||||
macro_rules! println {
|
||||
($fmt: literal $(, $($arg: tt)+)?) => {
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! The panic handler
|
||||
|
||||
use crate::sbi::shutdown;
|
||||
use core::panic::PanicInfo;
|
||||
|
||||
|
@ -1,3 +1,10 @@
|
||||
//! Loading user applications into memory
|
||||
//!
|
||||
//! For chapter 3, user applications are simply part of the data included in the
|
||||
//! kernel binary, so we only need to copy them to the space allocated for each
|
||||
//! app to load them. We also allocate fixed spaces for each task's
|
||||
//! [`KernelStack`] and [`UserStack`].
|
||||
|
||||
use crate::config::*;
|
||||
use crate::trap::TrapContext;
|
||||
use core::arch::asm;
|
||||
|
@ -1,3 +1,22 @@
|
||||
//! The main module and entrypoint
|
||||
//!
|
||||
//! Various facilities of the kernels are implemented as submodules. The most
|
||||
//! important ones are:
|
||||
//!
|
||||
//! - [`trap`]: Handles all cases of switching from userspace to the kernel
|
||||
//! - [`task`]: Task management
|
||||
//! - [`syscall`]: System call handling and implementation
|
||||
//!
|
||||
//! The operating system also starts in this module. Kernel code starts
|
||||
//! executing from `entry.asm`, after which [`rust_main()`] is called to
|
||||
//! initialize various pieces of functionality. (See its source code for
|
||||
//! details.)
|
||||
//!
|
||||
//! We then call [`task::run_first_task()`] and for the first time go to
|
||||
//! userspace.
|
||||
|
||||
#![deny(missing_docs)]
|
||||
#![deny(warnings)]
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(panic_info_message)]
|
||||
@ -18,6 +37,8 @@ mod trap;
|
||||
global_asm!(include_str!("entry.asm"));
|
||||
global_asm!(include_str!("link_app.S"));
|
||||
|
||||
|
||||
/// clear BSS segment
|
||||
fn clear_bss() {
|
||||
extern "C" {
|
||||
fn sbss();
|
||||
@ -29,6 +50,7 @@ fn clear_bss() {
|
||||
}
|
||||
}
|
||||
|
||||
/// the rust entry-point of os
|
||||
#[no_mangle]
|
||||
pub fn rust_main() -> ! {
|
||||
clear_bss();
|
||||
|
@ -1,17 +1,18 @@
|
||||
#![allow(unused)]
|
||||
//! SBI call wrappers
|
||||
|
||||
use core::arch::asm;
|
||||
|
||||
const SBI_SET_TIMER: usize = 0;
|
||||
const SBI_CONSOLE_PUTCHAR: usize = 1;
|
||||
const SBI_CONSOLE_GETCHAR: usize = 2;
|
||||
const SBI_CLEAR_IPI: usize = 3;
|
||||
const SBI_SEND_IPI: usize = 4;
|
||||
const SBI_REMOTE_FENCE_I: usize = 5;
|
||||
const SBI_REMOTE_SFENCE_VMA: usize = 6;
|
||||
const SBI_REMOTE_SFENCE_VMA_ASID: usize = 7;
|
||||
const SBI_SHUTDOWN: usize = 8;
|
||||
// const SBI_SET_TIMER: usize = 0;
|
||||
// const SBI_CONSOLE_GETCHAR: usize = 2;
|
||||
// const SBI_CLEAR_IPI: usize = 3;
|
||||
// const SBI_SEND_IPI: usize = 4;
|
||||
// const SBI_REMOTE_FENCE_I: usize = 5;
|
||||
// const SBI_REMOTE_SFENCE_VMA: usize = 6;
|
||||
// const SBI_REMOTE_SFENCE_VMA_ASID: usize = 7;
|
||||
|
||||
/// handle SBI call with `which` SBI_id and other arguments
|
||||
#[inline(always)]
|
||||
fn sbi_call(which: usize, arg0: usize, arg1: usize, arg2: usize) -> usize {
|
||||
let mut ret;
|
||||
@ -33,9 +34,9 @@ pub fn console_putchar(c: usize) {
|
||||
}
|
||||
|
||||
/// use sbi call to getchar from console (qemu uart handler)
|
||||
pub fn console_getchar() -> usize {
|
||||
sbi_call(SBI_CONSOLE_GETCHAR, 0, 0, 0)
|
||||
}
|
||||
// pub fn console_getchar() -> usize {
|
||||
// sbi_call(SBI_CONSOLE_GETCHAR, 0, 0, 0)
|
||||
// }
|
||||
|
||||
/// use sbi call to shutdown the kernel
|
||||
pub fn shutdown() -> ! {
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Synchronization and interior mutability primitives
|
||||
|
||||
mod up;
|
||||
|
||||
pub use up::UPSafeCell;
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Uniprocessor interior mutability primitives
|
||||
|
||||
use core::cell::{RefCell, RefMut};
|
||||
|
||||
/// Wrap a static data structure inside it so that we are
|
||||
@ -22,7 +24,7 @@ impl<T> UPSafeCell<T> {
|
||||
inner: RefCell::new(value),
|
||||
}
|
||||
}
|
||||
/// Panic if the data has been borrowed.
|
||||
/// Exclusive access inner data in UPSafeCell. Panic if the data has been borrowed.
|
||||
pub fn exclusive_access(&self) -> RefMut<'_, T> {
|
||||
self.inner.borrow_mut()
|
||||
}
|
||||
|
@ -1,5 +1,8 @@
|
||||
//! File and filesystem-related syscalls
|
||||
|
||||
const FD_STDOUT: usize = 1;
|
||||
|
||||
/// write buf of length `len` to a file with `fd`
|
||||
pub fn sys_write(fd: usize, buf: *const u8, len: usize) -> isize {
|
||||
match fd {
|
||||
FD_STDOUT => {
|
||||
|
@ -1,3 +1,15 @@
|
||||
//! Implementation of syscalls
|
||||
//!
|
||||
//! The single entry point to all system calls, [`syscall()`], is called
|
||||
//! whenever userspace wishes to perform a system call using the `ecall`
|
||||
//! instruction. In this case, the processor raises an 'Environment call from
|
||||
//! U-mode' exception, which is handled as one of the cases in
|
||||
//! [`crate::trap::trap_handler`].
|
||||
//!
|
||||
//! For clarity, each single syscall is implemented as its own function, named
|
||||
//! `sys_` then the name of the syscall. You can find functions like this in
|
||||
//! submodules, and you should also implement syscalls this way.
|
||||
|
||||
const SYSCALL_WRITE: usize = 64;
|
||||
const SYSCALL_EXIT: usize = 93;
|
||||
const SYSCALL_YIELD: usize = 124;
|
||||
|
@ -1,3 +1,4 @@
|
||||
//! Process management syscalls
|
||||
use crate::task::{exit_current_and_run_next, suspend_current_and_run_next};
|
||||
|
||||
/// task exits and submit an exit code
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Implementation of [`TaskContext`]
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
#[repr(C)]
|
||||
pub struct TaskContext {
|
||||
|
@ -1,3 +1,14 @@
|
||||
//! Task management implementation
|
||||
//!
|
||||
//! Everything about task management, like starting and switching tasks is
|
||||
//! implemented here.
|
||||
//!
|
||||
//! A single global instance of [`TaskManager`] called `TASK_MANAGER` controls
|
||||
//! all the tasks in the operating system.
|
||||
//!
|
||||
//! Be careful when you see [`__switch`]. Control flow around this function
|
||||
//! might not be what you expect.
|
||||
|
||||
mod context;
|
||||
mod switch;
|
||||
|
||||
@ -13,6 +24,15 @@ use task::{TaskControlBlock, TaskStatus};
|
||||
|
||||
pub use context::TaskContext;
|
||||
|
||||
/// The task manager, where all the tasks are managed.
|
||||
///
|
||||
/// Functions implemented on `TaskManager` deals with all task state transitions
|
||||
/// and task context switching. For convenience, you can find wrappers around it
|
||||
/// in the module level.
|
||||
///
|
||||
/// Most of `TaskManager` are hidden behind the field `inner`, to defer
|
||||
/// borrowing checks to runtime. You can see examples on how to use `inner` in
|
||||
/// existing functions on `TaskManager`.
|
||||
pub struct TaskManager {
|
||||
/// total number of tasks
|
||||
num_app: usize,
|
||||
|
@ -1,8 +1,17 @@
|
||||
//! Rust wrapper around `__switch`.
|
||||
//!
|
||||
//! Switching to a different task's context happens here. The actual
|
||||
//! implementation must not be in Rust and (essentially) has to be in assembly
|
||||
//! language (Do you know why?), so this module really is just a wrapper around
|
||||
//! `switch.S`.
|
||||
|
||||
use super::TaskContext;
|
||||
use core::arch::global_asm;
|
||||
|
||||
global_asm!(include_str!("switch.S"));
|
||||
|
||||
extern "C" {
|
||||
/// Switch to the context of `next_task_cx_ptr`, saving the current context
|
||||
/// in `current_task_cx_ptr`.
|
||||
pub fn __switch(current_task_cx_ptr: *mut TaskContext, next_task_cx_ptr: *const TaskContext);
|
||||
}
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Types related to task management
|
||||
|
||||
use super::TaskContext;
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
|
@ -1,3 +1,17 @@
|
||||
//! Trap handling functionality
|
||||
//!
|
||||
//! For rCore, we have a single trap entry point, namely `__alltraps`. At
|
||||
//! initialization in [`init()`], we set the `stvec` CSR to point to it.
|
||||
//!
|
||||
//! All traps go through `__alltraps`, which is defined in `trap.S`. The
|
||||
//! assembly language code does just enough work restore the kernel space
|
||||
//! context, ensuring that Rust code safely runs, and transfers control to
|
||||
//! [`trap_handler()`].
|
||||
//!
|
||||
//! It then calls different functionality based on what exactly the exception
|
||||
//! was. For example, timer interrupts trigger task preemption, and syscalls go
|
||||
//! to [`syscall()`].
|
||||
|
||||
mod context;
|
||||
|
||||
use crate::syscall::syscall;
|
||||
|
Loading…
Reference in New Issue
Block a user