Add adder_* tests.

This commit is contained in:
Yifan Wu 2023-01-05 21:26:00 +08:00
parent 82b40b6f3d
commit 0fffe23705
13 changed files with 459 additions and 255 deletions

View File

@ -12,15 +12,19 @@ static mut A: usize = 0;
const PER_THREAD: usize = 10000;
const THREAD_COUNT: usize = 16;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
t = t * t % 10007;
}
a.write_volatile(cur + 1);
critical_section(&mut t);
}
exit(t as i32)
}

View File

@ -0,0 +1,72 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use core::sync::atomic::{AtomicBool, Ordering};
use user_lib::{exit, get_time, thread_create, waittid, yield_};
static mut A: usize = 0;
static OCCUPIED: AtomicBool = AtomicBool::new(false);
const PER_THREAD_DEFAULT: usize = 10000;
const THREAD_COUNT_DEFAULT: usize = 16;
static mut PER_THREAD: usize = 0;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
fn lock() {
while OCCUPIED
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_err()
{
yield_();
}
}
fn unlock() {
OCCUPIED.store(false, Ordering::Relaxed);
}
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
lock();
critical_section(&mut t);
unlock();
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT_DEFAULT;
let mut per_thread = PER_THREAD_DEFAULT;
if argc >= 2 {
thread_count = argv[1].parse().unwrap();
if argc >= 3 {
per_thread = argv[2].parse().unwrap();
}
}
unsafe { PER_THREAD = per_thread; }
let start = get_time();
let mut v = Vec::new();
for _ in 0..thread_count {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, unsafe { PER_THREAD } * thread_count);
0
}

View File

@ -0,0 +1,69 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid, yield_};
static mut A: usize = 0;
static mut OCCUPIED: bool = false;
const PER_THREAD_DEFAULT: usize = 10000;
const THREAD_COUNT_DEFAULT: usize = 16;
static mut PER_THREAD: usize = 0;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
unsafe fn lock() {
while OCCUPIED {
yield_();
}
OCCUPIED = true;
}
unsafe fn unlock() {
OCCUPIED = false;
}
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
lock();
critical_section(&mut t);
unlock();
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT_DEFAULT;
let mut per_thread = PER_THREAD_DEFAULT;
if argc >= 2 {
thread_count = argv[1].parse().unwrap();
if argc >= 3 {
per_thread = argv[2].parse().unwrap();
}
}
unsafe { PER_THREAD = per_thread; }
let start = get_time();
let mut v = Vec::new();
for _ in 0..thread_count {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, unsafe { PER_THREAD } * thread_count);
0
}

View File

@ -0,0 +1,59 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid};
use user_lib::{mutex_blocking_create, mutex_lock, mutex_unlock};
static mut A: usize = 0;
const PER_THREAD_DEFAULT: usize = 10000;
const THREAD_COUNT_DEFAULT: usize = 16;
static mut PER_THREAD: usize = 0;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
mutex_lock(0);
critical_section(&mut t);
mutex_unlock(0);
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT_DEFAULT;
let mut per_thread = PER_THREAD_DEFAULT;
if argc >= 2 {
thread_count = argv[1].parse().unwrap();
if argc >= 3 {
per_thread = argv[2].parse().unwrap();
}
}
unsafe { PER_THREAD = per_thread; }
let start = get_time();
assert_eq!(mutex_blocking_create(), 0);
let mut v = Vec::new();
for _ in 0..thread_count {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, unsafe { PER_THREAD } * thread_count);
0
}

View File

@ -0,0 +1,60 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid};
use user_lib::{mutex_create, mutex_lock, mutex_unlock};
static mut A: usize = 0;
const PER_THREAD_DEFAULT: usize = 10000;
const THREAD_COUNT_DEFAULT: usize = 16;
static mut PER_THREAD: usize = 0;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
mutex_lock(0);
critical_section(&mut t);
mutex_unlock(0);
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT_DEFAULT;
let mut per_thread = PER_THREAD_DEFAULT;
if argc >= 2 {
thread_count = argv[1].parse().unwrap();
if argc >= 3 {
per_thread = argv[2].parse().unwrap();
}
}
unsafe { PER_THREAD = per_thread; }
let start = get_time();
assert_eq!(mutex_create(), 0);
let mut v = Vec::new();
for _ in 0..thread_count {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, unsafe { PER_THREAD } * thread_count);
0
}

View File

@ -0,0 +1,89 @@
//! It only works on a single CPU!
#![no_std]
#![no_main]
#![feature(core_intrinsics)]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid};
use core::sync::atomic::{compiler_fence, Ordering};
static mut A: usize = 0;
static mut FLAG: [bool; 2] = [false; 2];
static mut TURN: usize = 0;
const PER_THREAD_DEFAULT: usize = 2000;
const THREAD_COUNT_DEFAULT: usize = 2;
static mut PER_THREAD: usize = 0;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
unsafe fn lock(id: usize) {
FLAG[id] = true;
TURN = 1 - id;
// Tell the compiler not to reorder memory operations
// across this fence.
compiler_fence(Ordering::SeqCst);
// Why do we need to use volatile_read here?
// Otherwise the compiler will assume that they will never
// be changed on this thread. Thus, they will be accessed
// only once!
while vload!(&FLAG[1 - id]) && vload!(&TURN) == 1 - id {}
}
unsafe fn unlock(id: usize) {
FLAG[id] = false;
}
unsafe fn f(id: usize) -> ! {
let mut t = 2usize;
for _iter in 0..PER_THREAD {
lock(id);
critical_section(&mut t);
unlock(id);
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT_DEFAULT;
let mut per_thread = PER_THREAD_DEFAULT;
if argc >= 2 {
thread_count = argv[1].parse().unwrap();
if argc >= 3 {
per_thread = argv[2].parse().unwrap();
}
}
unsafe { PER_THREAD = per_thread; }
// uncomment this if you want to check the assembly
// println!(
// "addr: lock={:#x}, unlock={:#x}",
// lock as usize,
// unlock as usize
// );
let start = get_time();
let mut v = Vec::new();
assert_eq!(thread_count, 2, "Peterson works when there are only 2 threads.");
for id in 0..thread_count {
v.push(thread_create(f as usize, id) as usize);
}
let mut time_cost = Vec::new();
for tid in v.iter() {
time_cost.push(waittid(*tid));
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, unsafe { PER_THREAD } * thread_count);
0
}

View File

@ -0,0 +1,88 @@
//! It only works on a single CPU!
#![no_std]
#![no_main]
#![feature(core_intrinsics)]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid, yield_};
use core::sync::atomic::{compiler_fence, Ordering};
static mut A: usize = 0;
static mut FLAG: [bool; 2] = [false; 2];
static mut TURN: usize = 0;
const PER_THREAD_DEFAULT: usize = 2000;
const THREAD_COUNT_DEFAULT: usize = 2;
static mut PER_THREAD: usize = 0;
unsafe fn critical_section(t: &mut usize) {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
*t = (*t) * (*t) % 10007;
}
a.write_volatile(cur + 1);
}
unsafe fn lock(id: usize) {
FLAG[id] = true;
TURN = 1 - id;
// Tell the compiler not to reorder memory operations
// across this fence.
compiler_fence(Ordering::SeqCst);
while FLAG[1 - id] && TURN == 1 - id {
yield_();
}
}
unsafe fn unlock(id: usize) {
FLAG[id] = false;
}
unsafe fn f(id: usize) -> ! {
let mut t = 2usize;
for _iter in 0..PER_THREAD {
lock(id);
critical_section(&mut t);
unlock(id);
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT_DEFAULT;
let mut per_thread = PER_THREAD_DEFAULT;
if argc >= 2 {
thread_count = argv[1].parse().unwrap();
if argc >= 3 {
per_thread = argv[2].parse().unwrap();
}
}
unsafe { PER_THREAD = per_thread; }
// uncomment this if you want to check the assembly
// println!(
// "addr: lock={:#x}, unlock={:#x}",
// lock as usize,
// unlock as usize
// );
let start = get_time();
let mut v = Vec::new();
assert_eq!(thread_count, 2, "Peterson works when there are only 2 threads.");
for id in 0..thread_count {
v.push(thread_create(f as usize, id) as usize);
}
let mut time_cost = Vec::new();
for tid in v.iter() {
time_cost.push(waittid(*tid));
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, unsafe { PER_THREAD } * thread_count);
0
}

View File

@ -10,7 +10,7 @@ extern crate core;
use alloc::vec::Vec;
use core::sync::atomic::{AtomicUsize, Ordering};
use user_lib::{exit, sleep, thread_create, waittid};
const N: usize = 3;
const N: usize = 1000;
static mut TURN: usize = 0;
static mut FLAG: [bool; 2] = [false; 2];
@ -29,27 +29,30 @@ fn critical_test_exit() {
}
fn peterson_enter_critical(id: usize, peer_id: usize) {
println!("Thread[{}] try enter", id);
// println!("Thread[{}] try enter", id);
vstore!(&FLAG[id], true);
vstore!(&TURN, peer_id);
memory_fence!();
while vload!(&FLAG[peer_id]) && vload!(&TURN) == peer_id {
println!("Thread[{}] enter fail", id);
// println!("Thread[{}] enter fail", id);
sleep(1);
println!("Thread[{}] retry enter", id);
// println!("Thread[{}] retry enter", id);
}
println!("Thread[{}] enter", id);
// println!("Thread[{}] enter", id);
}
fn peterson_exit_critical(id: usize) {
vstore!(&FLAG[id], false);
println!("Thread[{}] exit", id);
// println!("Thread[{}] exit", id);
}
pub fn thread_fn(id: usize) -> ! {
println!("Thread[{}] init.", id);
// println!("Thread[{}] init.", id);
let peer_id: usize = id ^ 1;
for _ in 0..N {
for iter in 0..N {
if iter % 10 == 0 {
println!("[{}] it={}", id, iter);
}
peterson_enter_critical(id, peer_id);
critical_test_enter();
for _ in 0..3 {
@ -74,4 +77,4 @@ pub fn main() -> i32 {
}
println!("main thread exited.");
0
}
}

View File

@ -1,50 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use crate::alloc::string::ToString;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid};
static mut A: usize = 0;
const PER_THREAD: usize = 10000;
const THREAD_COUNT: usize = 16;
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
t = t * t % 10007;
}
a.write_volatile(cur + 1);
}
exit(t as i32)
}
#[no_mangle]
pub fn main(argc: usize, argv: &[&str]) -> i32 {
let mut thread_count = THREAD_COUNT;
if argc == 2 {
thread_count = argv[1].to_string().parse::<usize>().unwrap();
} else if argc != 1 {
println!("ERROR in argv");
exit(-1);
}
let start = get_time();
let mut v = Vec::new();
for _ in 0..thread_count {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, PER_THREAD * thread_count);
0
}

View File

@ -1,50 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use core::sync::atomic::{AtomicBool, Ordering};
use user_lib::{exit, get_time, thread_create, waittid, yield_};
static mut A: usize = 0;
static OCCUPIED: AtomicBool = AtomicBool::new(false);
const PER_THREAD: usize = 10000;
const THREAD_COUNT: usize = 16;
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
while OCCUPIED
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_err()
{
yield_();
}
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
t = t * t % 10007;
}
a.write_volatile(cur + 1);
OCCUPIED.store(false, Ordering::Relaxed);
}
exit(t as i32)
}
#[no_mangle]
pub fn main() -> i32 {
let start = get_time();
let mut v = Vec::new();
for _ in 0..THREAD_COUNT {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, PER_THREAD * THREAD_COUNT);
0
}

View File

@ -1,50 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid, yield_};
static mut A: usize = 0;
static mut OCCUPIED: bool = false;
const PER_THREAD: usize = 10000;
const THREAD_COUNT: usize = 16;
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
while OCCUPIED {
yield_();
}
OCCUPIED = true;
// enter critical section
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
t = t * t % 10007;
}
a.write_volatile(cur + 1);
// exit critical section
OCCUPIED = false;
}
exit(t as i32)
}
#[no_mangle]
pub fn main() -> i32 {
let start = get_time();
let mut v = Vec::new();
for _ in 0..THREAD_COUNT {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, PER_THREAD * THREAD_COUNT);
0
}

View File

@ -1,45 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid};
use user_lib::{mutex_blocking_create, mutex_lock, mutex_unlock};
static mut A: usize = 0;
const PER_THREAD: usize = 10000;
const THREAD_COUNT: usize = 16;
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
mutex_lock(0);
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
t = t * t % 10007;
}
a.write_volatile(cur + 1);
mutex_unlock(0);
}
exit(t as i32)
}
#[no_mangle]
pub fn main() -> i32 {
let start = get_time();
assert_eq!(mutex_blocking_create(), 0);
let mut v = Vec::new();
for _ in 0..THREAD_COUNT {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, PER_THREAD * THREAD_COUNT);
0
}

View File

@ -1,45 +0,0 @@
#![no_std]
#![no_main]
#[macro_use]
extern crate user_lib;
extern crate alloc;
use alloc::vec::Vec;
use user_lib::{exit, get_time, thread_create, waittid};
use user_lib::{mutex_create, mutex_lock, mutex_unlock};
static mut A: usize = 0;
const PER_THREAD: usize = 10000;
const THREAD_COUNT: usize = 16;
unsafe fn f() -> ! {
let mut t = 2usize;
for _ in 0..PER_THREAD {
mutex_lock(0);
let a = &mut A as *mut usize;
let cur = a.read_volatile();
for _ in 0..500 {
t = t * t % 10007;
}
a.write_volatile(cur + 1);
mutex_unlock(0);
}
exit(t as i32)
}
#[no_mangle]
pub fn main() -> i32 {
let start = get_time();
assert_eq!(mutex_create(), 0);
let mut v = Vec::new();
for _ in 0..THREAD_COUNT {
v.push(thread_create(f as usize, 0) as usize);
}
for tid in v.into_iter() {
waittid(tid);
}
println!("time cost is {}ms", get_time() - start);
assert_eq!(unsafe { A }, PER_THREAD * THREAD_COUNT);
0
}