Split out detector into seporate crate
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
0293dbfe62
commit
bf83a11526
12
Cargo.lock
generated
12
Cargo.lock
generated
@ -445,6 +445,17 @@ dependencies = [
|
||||
"autocfg",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "object-detector"
|
||||
version = "0.1.0"
|
||||
source = "git+https://git.aidev.ru/andrey/object-detector.git#2ebfe7da2ca1bef99a0afb785b36495484226d85"
|
||||
dependencies = [
|
||||
"ndarray 0.15.3",
|
||||
"onnx-model",
|
||||
"serde",
|
||||
"serde_derive",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "onnx-model"
|
||||
version = "0.2.3"
|
||||
@ -523,6 +534,7 @@ dependencies = [
|
||||
"nalgebra",
|
||||
"ndarray 0.15.3",
|
||||
"num-traits",
|
||||
"object-detector",
|
||||
"onnx-model",
|
||||
"serde",
|
||||
"serde_derive",
|
||||
|
@ -10,5 +10,6 @@ num-traits = "0.2"
|
||||
serde = "1.0"
|
||||
serde_derive = "1.0"
|
||||
thiserror = "1.0"
|
||||
object-detector = { git = "https://git.aidev.ru/andrey/object-detector.git" }
|
||||
munkres = { version = "0.5", git = "https://git.aidev.ru/andrey/munkres-rs.git" }
|
||||
onnx-model = { git = "https://git.aidev.ru/andrey/onnx-model.git", branch = "v1.10" }
|
||||
|
11
src/bbox.rs
11
src/bbox.rs
@ -1,3 +1,4 @@
|
||||
use crate::Detection;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
use std::marker::PhantomData;
|
||||
@ -280,12 +281,8 @@ impl<'a> From<&'a BBox<Xywh>> for BBox<Xyah> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a BBox<Xyah>> for BBox<Xywh> {
|
||||
#[inline]
|
||||
fn from(v: &'a BBox<Xyah>) -> Self {
|
||||
Self(
|
||||
[v.0[0], v.0[1], v.0[2] * v.0[3], v.0[3]],
|
||||
Default::default(),
|
||||
)
|
||||
impl From<&'_ Detection> for BBox<Xywh> {
|
||||
fn from(det: &'_ Detection) -> BBox<Xywh> {
|
||||
BBox::xywh(det.x, det.y, det.w, det.h)
|
||||
}
|
||||
}
|
||||
|
@ -1,58 +0,0 @@
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
use crate::bbox::{BBox, Xywh};
|
||||
|
||||
/// Contains (x,y) of the center and (width,height) of bbox
|
||||
#[derive(Serialize, Deserialize, Debug, Clone, Copy)]
|
||||
pub struct Detection {
|
||||
pub x: f32,
|
||||
pub y: f32,
|
||||
pub w: f32,
|
||||
pub h: f32,
|
||||
#[serde(rename = "p")]
|
||||
pub confidence: f32,
|
||||
#[serde(rename = "c")]
|
||||
pub class: i32,
|
||||
}
|
||||
|
||||
impl Detection {
|
||||
pub fn iou(&self, other: &Detection) -> f32 {
|
||||
let b1_area = (self.w + 1.) * (self.h + 1.);
|
||||
let (xmin, xmax, ymin, ymax) = (self.xmin(), self.xmax(), self.ymin(), self.ymax());
|
||||
|
||||
let b2_area = (other.w + 1.) * (other.h + 1.);
|
||||
|
||||
let i_xmin = xmin.max(other.xmin());
|
||||
let i_xmax = xmax.min(other.xmax());
|
||||
let i_ymin = ymin.max(other.ymin());
|
||||
let i_ymax = ymax.min(other.ymax());
|
||||
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
|
||||
|
||||
(i_area) / (b1_area + b2_area - i_area)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn bbox(&self) -> BBox<Xywh> {
|
||||
BBox::xywh(self.x, self.y, self.w, self.h)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn xmax(&self) -> f32 {
|
||||
self.x + self.w / 2.
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn ymax(&self) -> f32 {
|
||||
self.y + self.h / 2.
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn xmin(&self) -> f32 {
|
||||
self.x - self.w / 2.
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn ymin(&self) -> f32 {
|
||||
self.y - self.h / 2.
|
||||
}
|
||||
}
|
248
src/detector.rs
248
src/detector.rs
@ -1,248 +0,0 @@
|
||||
use crate::detection::Detection;
|
||||
use crate::error::Error;
|
||||
|
||||
use ndarray::prelude::*;
|
||||
use onnx_model::*;
|
||||
|
||||
const MODEL_DYNAMIC_INPUT_DIMENSION: i64 = -1;
|
||||
|
||||
pub struct YoloDetectorConfig {
|
||||
pub confidence_threshold: f32,
|
||||
pub iou_threshold: f32,
|
||||
pub classes: Vec<i32>,
|
||||
pub class_map: Option<Vec<i32>>,
|
||||
}
|
||||
|
||||
impl YoloDetectorConfig {
|
||||
pub fn new(confidence_threshold: f32, classes: Vec<i32>) -> Self {
|
||||
Self {
|
||||
confidence_threshold,
|
||||
iou_threshold: 0.2,
|
||||
classes,
|
||||
class_map: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct YoloDetector {
|
||||
model: OnnxInferenceModel,
|
||||
config: YoloDetectorConfig,
|
||||
}
|
||||
|
||||
impl YoloDetector {
|
||||
pub fn new(
|
||||
model_src: &str,
|
||||
config: YoloDetectorConfig,
|
||||
device: InferenceDevice,
|
||||
) -> Result<Self, Error> {
|
||||
let model = OnnxInferenceModel::new(model_src, device)?;
|
||||
|
||||
Ok(Self { model, config })
|
||||
}
|
||||
|
||||
pub fn get_model_input_size(&self) -> Option<(u32, u32)> {
|
||||
let mut input_dims = self.model.get_input_infos()[0].shape.dims.clone();
|
||||
let input_height = input_dims.pop().unwrap();
|
||||
let input_width = input_dims.pop().unwrap();
|
||||
if input_height == MODEL_DYNAMIC_INPUT_DIMENSION
|
||||
&& input_width == MODEL_DYNAMIC_INPUT_DIMENSION
|
||||
{
|
||||
None
|
||||
} else {
|
||||
Some((input_width as u32, input_height as u32))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn detect(
|
||||
&self,
|
||||
frames: ArrayView4<'_, f32>,
|
||||
fw: i32,
|
||||
fh: i32,
|
||||
with_crop: bool,
|
||||
) -> Result<Vec<Vec<Detection>>, Error> {
|
||||
let in_shape = frames.shape();
|
||||
let (in_w, in_h) = (in_shape[3], in_shape[2]);
|
||||
let preditions = self.model.run(&[frames.into_dyn()])?.pop().unwrap();
|
||||
let shape = preditions.shape();
|
||||
let shape = [shape[0], shape[1], shape[2]];
|
||||
let arr = preditions.into_shape(shape).unwrap();
|
||||
let bboxes = self.postprocess(arr.view(), in_w, in_h, fw, fh, with_crop)?;
|
||||
|
||||
Ok(bboxes)
|
||||
}
|
||||
|
||||
fn postprocess(
|
||||
&self,
|
||||
view: ArrayView3<'_, f32>,
|
||||
in_w: usize,
|
||||
in_h: usize,
|
||||
frame_width: i32,
|
||||
frame_height: i32,
|
||||
with_crop: bool,
|
||||
) -> Result<Vec<Vec<Detection>>, Error> {
|
||||
let shape = view.shape();
|
||||
let nbatches = shape[0];
|
||||
let npreds = shape[1];
|
||||
let pred_size = shape[2];
|
||||
let mut results: Vec<Vec<Detection>> = (0..nbatches).map(|_| vec![]).collect();
|
||||
|
||||
let (ox, oy, ow, oh) = if with_crop {
|
||||
let in_a = in_h as f32 / in_w as f32;
|
||||
let frame_a = frame_height as f32 / frame_width as f32;
|
||||
|
||||
if in_a > frame_a {
|
||||
let w = frame_height as f32 / in_a;
|
||||
((frame_width as f32 - w) / 2.0, 0.0, w, frame_height as f32)
|
||||
} else {
|
||||
let h = frame_width as f32 * in_a;
|
||||
(0.0, (frame_height as f32 - h) / 2.0, frame_width as f32, h)
|
||||
}
|
||||
} else {
|
||||
(0.0, 0.0, frame_width as f32, frame_height as f32)
|
||||
};
|
||||
|
||||
// Extract the bounding boxes for which confidence is above the threshold.
|
||||
for batch in 0..nbatches {
|
||||
let results = &mut results[batch];
|
||||
|
||||
// The bounding boxes grouped by (maximum) class index.
|
||||
let mut bboxes: Vec<Vec<Detection>> = (0..80).map(|_| vec![]).collect();
|
||||
|
||||
for index in 0..npreds {
|
||||
let x_0 = view.index_axis(Axis(0), batch);
|
||||
let x_1 = x_0.index_axis(Axis(0), index);
|
||||
let detection = x_1.as_slice().unwrap();
|
||||
|
||||
let (x, y, w, h) = match &detection[0..4] {
|
||||
[center_x, center_y, width, height] => {
|
||||
let center_x = ox + center_x * ow;
|
||||
let center_y = oy + center_y * oh;
|
||||
let width = width * ow as f32;
|
||||
let height = height * oh as f32;
|
||||
|
||||
(center_x, center_y, width, height)
|
||||
}
|
||||
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let classes = &detection[4..pred_size];
|
||||
|
||||
let mut class_index = -1;
|
||||
let mut confidence = 0.0;
|
||||
|
||||
for (idx, val) in classes.iter().copied().enumerate() {
|
||||
if val > confidence {
|
||||
class_index = idx as i32;
|
||||
confidence = val;
|
||||
}
|
||||
}
|
||||
|
||||
if class_index > -1 && confidence > self.config.confidence_threshold {
|
||||
if !self.config.classes.contains(&class_index) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if w * h > ((frame_width / 2) * (frame_height / 2)) as f32 {
|
||||
continue;
|
||||
}
|
||||
|
||||
let mapped_class = match &self.config.class_map {
|
||||
Some(map) => map
|
||||
.get(class_index as usize)
|
||||
.copied()
|
||||
.unwrap_or(class_index),
|
||||
None => class_index,
|
||||
};
|
||||
|
||||
bboxes[mapped_class as usize].push(Detection {
|
||||
x,
|
||||
y,
|
||||
w,
|
||||
h,
|
||||
confidence,
|
||||
class: class_index as _,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
for mut dets in bboxes.into_iter() {
|
||||
if dets.is_empty() {
|
||||
continue;
|
||||
}
|
||||
|
||||
if dets.len() == 1 {
|
||||
results.append(&mut dets);
|
||||
continue;
|
||||
}
|
||||
|
||||
let indices = self.non_maximum_supression(&mut dets)?;
|
||||
|
||||
results.extend(dets.drain(..).enumerate().filter_map(|(idx, item)| {
|
||||
if indices.contains(&(idx as i32)) {
|
||||
Some(item)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}));
|
||||
|
||||
// for (det, idx) in dets.into_iter().zip(indices) {
|
||||
// if idx > -1 {
|
||||
// results.push(det);
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
||||
Ok(results)
|
||||
}
|
||||
|
||||
// fn non_maximum_supression(&self, dets: &mut [Detection]) -> Result<Vec<i32>, Error> {
|
||||
// let mut rects = core::Vector::new();
|
||||
// let mut scores = core::Vector::new();
|
||||
|
||||
// for det in dets {
|
||||
// rects.push(core::Rect2d::new(
|
||||
// det.xmin as f64,
|
||||
// det.ymin as f64,
|
||||
// (det.xmax - det.xmin) as f64,
|
||||
// (det.ymax - det.ymin) as f64
|
||||
// ));
|
||||
// scores.push(det.confidence);
|
||||
// }
|
||||
|
||||
// let mut indices = core::Vector::<i32>::new();
|
||||
// dnn::nms_boxes_f64(
|
||||
// &rects,
|
||||
// &scores,
|
||||
// self.config.confidence_threshold,
|
||||
// self.config.iou_threshold,
|
||||
// &mut indices,
|
||||
// 1.0,
|
||||
// 0
|
||||
// )?;
|
||||
|
||||
// Ok(indices.to_vec())
|
||||
// }
|
||||
|
||||
fn non_maximum_supression(&self, dets: &mut [Detection]) -> Result<Vec<i32>, Error> {
|
||||
dets.sort_unstable_by(|a, b| b.confidence.partial_cmp(&a.confidence).unwrap());
|
||||
|
||||
let mut retain: Vec<_> = (0..dets.len() as i32).collect();
|
||||
for idx in 0..dets.len() - 1 {
|
||||
if retain[idx] != -1 {
|
||||
for r in retain[idx + 1..].iter_mut() {
|
||||
if *r != -1 {
|
||||
let iou = dets[idx].iou(&dets[*r as usize]);
|
||||
if iou > self.config.iou_threshold {
|
||||
*r = -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
retain.retain(|&x| x > -1);
|
||||
Ok(retain)
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
use crate::detection::Detection;
|
||||
use crate::Detection;
|
||||
|
||||
pub struct Frame {
|
||||
pub dims: (u32, u32),
|
||||
|
@ -1,6 +1,4 @@
|
||||
pub mod bbox;
|
||||
pub mod detection;
|
||||
pub mod detector;
|
||||
pub mod error;
|
||||
pub mod frame;
|
||||
pub mod math;
|
||||
@ -12,8 +10,8 @@ mod circular_queue;
|
||||
mod predictor;
|
||||
mod track;
|
||||
|
||||
pub use detection::Detection;
|
||||
pub use frame::Frame;
|
||||
pub use object_detector::Detection;
|
||||
pub use track::Track;
|
||||
|
||||
use error::Error;
|
||||
|
@ -1,5 +1,6 @@
|
||||
use std::sync::atomic::AtomicU32;
|
||||
|
||||
use crate::bbox::{BBox, Xywh};
|
||||
use crate::tracker::Object;
|
||||
use crate::Detection;
|
||||
|
||||
@ -391,6 +392,8 @@ impl Participant {
|
||||
|
||||
impl From<&Participant> for crate::Track {
|
||||
fn from(p: &Participant) -> crate::Track {
|
||||
let bbox: BBox<Xywh> = p.last_detection().into();
|
||||
|
||||
crate::Track {
|
||||
track_id: p.id as _,
|
||||
time_since_update: p.time_since_update as _,
|
||||
@ -403,7 +406,7 @@ impl From<&Participant> for crate::Track {
|
||||
.unwrap_or(0) as _,
|
||||
confidence: p.hit_score_sum / p.hits_count as f32,
|
||||
iou_slip: p.iou_slip(),
|
||||
bbox: p.last_detection().bbox().as_xyah(),
|
||||
bbox: bbox.as_xyah(),
|
||||
velocity: Some(*p.velocity()),
|
||||
direction: Some((p.direction().re, p.direction().im)),
|
||||
curvature: Some(p.object.predictor.curvature),
|
||||
|
Loading…
Reference in New Issue
Block a user