mirror of
https://github.com/sgmarz/osblog.git
synced 2024-11-27 20:03:32 +04:00
559 lines
16 KiB
Rust
559 lines
16 KiB
Rust
// page.rs
|
|
// Memory routines
|
|
// Stephen Marz
|
|
// 6 October 2019
|
|
|
|
use core::{mem::size_of, ptr::null_mut};
|
|
|
|
// ////////////////////////////////
|
|
// // Allocation routines
|
|
// ////////////////////////////////
|
|
extern "C" {
|
|
static HEAP_START: usize;
|
|
static HEAP_SIZE: usize;
|
|
}
|
|
|
|
// We will use ALLOC_START to mark the start of the actual
|
|
// memory we can dish out.
|
|
static mut ALLOC_START: usize = 0;
|
|
const PAGE_ORDER: usize = 12;
|
|
pub const PAGE_SIZE: usize = 1 << 12;
|
|
|
|
/// Align (set to a multiple of some power of two)
|
|
/// This takes an order which is the exponent to 2^order
|
|
/// Therefore, all alignments must be made as a power of two.
|
|
/// This function always rounds up.
|
|
pub const fn align_val(val: usize, order: usize) -> usize {
|
|
let o = (1usize << order) - 1;
|
|
(val + o) & !o
|
|
}
|
|
|
|
#[repr(u8)]
|
|
pub enum PageBits {
|
|
Empty = 0,
|
|
Taken = 1 << 0,
|
|
Last = 1 << 1,
|
|
}
|
|
|
|
impl PageBits {
|
|
// We convert PageBits to a u8 a lot, so this is
|
|
// for convenience.
|
|
pub fn val(self) -> u8 {
|
|
self as u8
|
|
}
|
|
}
|
|
|
|
// Each page is described by the Page structure. Linux does this
|
|
// as well, where each 4096-byte chunk of memory has a structure
|
|
// associated with it. However, there structure is much larger.
|
|
pub struct Page {
|
|
flags: u8,
|
|
}
|
|
|
|
impl Page {
|
|
// If this page has been marked as the final allocation,
|
|
// this function returns true. Otherwise, it returns false.
|
|
pub fn is_last(&self) -> bool {
|
|
if self.flags & PageBits::Last.val() != 0 {
|
|
true
|
|
}
|
|
else {
|
|
false
|
|
}
|
|
}
|
|
|
|
// If the page is marked as being taken (allocated), then
|
|
// this function returns true. Otherwise, it returns false.
|
|
pub fn is_taken(&self) -> bool {
|
|
if self.flags & PageBits::Taken.val() != 0 {
|
|
true
|
|
}
|
|
else {
|
|
false
|
|
}
|
|
}
|
|
|
|
// This is the opposite of is_taken().
|
|
pub fn is_free(&self) -> bool {
|
|
!self.is_taken()
|
|
}
|
|
|
|
// Clear the Page structure and all associated allocations.
|
|
pub fn clear(&mut self) {
|
|
self.flags = PageBits::Empty.val();
|
|
}
|
|
|
|
// Set a certain flag. We ran into trouble here since PageBits
|
|
// is an enumeration and we haven't implemented the BitOr Trait
|
|
// on it.
|
|
pub fn set_flag(&mut self, flag: PageBits) {
|
|
self.flags |= flag.val();
|
|
}
|
|
|
|
pub fn clear_flag(&mut self, flag: PageBits) {
|
|
self.flags &= !(flag.val());
|
|
}
|
|
}
|
|
|
|
/// Initialize the allocation system. There are several ways that we can
|
|
/// implement the page allocator:
|
|
/// 1. Free list (singly linked list where it starts at the first free
|
|
/// allocation) 2. Bookkeeping list (structure contains a taken and length)
|
|
/// 3. Allocate one Page structure per 4096 bytes (this is what I chose)
|
|
/// 4. Others
|
|
pub fn init() {
|
|
unsafe {
|
|
// let desc_per_page = PAGE_SIZE / size_of::<Page>();
|
|
let num_pages = HEAP_SIZE / PAGE_SIZE;
|
|
// let num_desc_pages = num_pages / desc_per_page;
|
|
let ptr = HEAP_START as *mut Page;
|
|
// Clear all pages to make sure that they aren't accidentally
|
|
// taken
|
|
for i in 0..num_pages {
|
|
(*ptr.add(i)).clear();
|
|
}
|
|
// Determine where the actual useful memory starts. This will be
|
|
// after all Page structures. We also must align the ALLOC_START
|
|
// to a page-boundary (PAGE_SIZE = 4096). ALLOC_START =
|
|
// (HEAP_START + num_pages * size_of::<Page>() + PAGE_SIZE - 1)
|
|
// & !(PAGE_SIZE - 1);
|
|
ALLOC_START = align_val(
|
|
HEAP_START
|
|
+ num_pages * size_of::<Page>(),
|
|
PAGE_ORDER,
|
|
);
|
|
}
|
|
}
|
|
|
|
/// Allocate a page or multiple pages
|
|
/// pages: the number of PAGE_SIZE pages to allocate
|
|
pub fn alloc(pages: usize) -> *mut u8 {
|
|
// We have to find a contiguous allocation of pages
|
|
assert!(pages > 0);
|
|
unsafe {
|
|
// We create a Page structure for each page on the heap. We
|
|
// actually might have more since HEAP_SIZE moves and so does
|
|
// the size of our structure, but we'll only waste a few bytes.
|
|
let num_pages = HEAP_SIZE / PAGE_SIZE;
|
|
let ptr = HEAP_START as *mut Page;
|
|
for i in 0..num_pages - pages {
|
|
let mut found = false;
|
|
// Check to see if this Page is free. If so, we have our
|
|
// first candidate memory address.
|
|
if (*ptr.add(i)).is_free() {
|
|
// It was FREE! Yay!
|
|
found = true;
|
|
for j in i..i + pages {
|
|
// Now check to see if we have a
|
|
// contiguous allocation for all of the
|
|
// request pages. If not, we should
|
|
// check somewhere else.
|
|
if (*ptr.add(j)).is_taken() {
|
|
found = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// We've checked to see if there are enough contiguous
|
|
// pages to form what we need. If we couldn't, found
|
|
// will be false, otherwise it will be true, which means
|
|
// we've found valid memory we can allocate.
|
|
if found {
|
|
for k in i..i + pages - 1 {
|
|
(*ptr.add(k)).set_flag(PageBits::Taken);
|
|
}
|
|
// The marker for the last page is
|
|
// PageBits::Last This lets us know when we've
|
|
// hit the end of this particular allocation.
|
|
(*ptr.add(i+pages-1)).set_flag(PageBits::Taken);
|
|
(*ptr.add(i+pages-1)).set_flag(PageBits::Last);
|
|
// The Page structures themselves aren't the
|
|
// useful memory. Instead, there is 1 Page
|
|
// structure per 4096 bytes starting at
|
|
// ALLOC_START.
|
|
return (ALLOC_START + PAGE_SIZE * i)
|
|
as *mut u8;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we get here, that means that no contiguous allocation was
|
|
// found.
|
|
null_mut()
|
|
}
|
|
|
|
/// Allocate and zero a page or multiple pages
|
|
/// pages: the number of pages to allocate
|
|
/// Each page is PAGE_SIZE which is calculated as 1 << PAGE_ORDER
|
|
/// On RISC-V, this typically will be 4,096 bytes.
|
|
pub fn zalloc(pages: usize) -> *mut u8 {
|
|
// Allocate and zero a page.
|
|
// First, let's get the allocation
|
|
let ret = alloc(pages);
|
|
if !ret.is_null() {
|
|
let size = (PAGE_SIZE * pages) / 8;
|
|
let big_ptr = ret as *mut u64;
|
|
for i in 0..size {
|
|
// We use big_ptr so that we can force an
|
|
// sd (store doubleword) instruction rather than
|
|
// the sb. This means 8x fewer stores than before.
|
|
// Typically we have to be concerned about remaining
|
|
// bytes, but fortunately 4096 % 8 = 0, so we
|
|
// won't have any remaining bytes.
|
|
unsafe {
|
|
(*big_ptr.add(i)) = 0;
|
|
}
|
|
}
|
|
}
|
|
ret
|
|
}
|
|
|
|
/// Deallocate a page by its pointer
|
|
/// The way we've structured this, it will automatically coalesce
|
|
/// contiguous pages.
|
|
pub fn dealloc(ptr: *mut u8) {
|
|
// Make sure we don't try to free a null pointer.
|
|
assert!(!ptr.is_null());
|
|
unsafe {
|
|
let addr =
|
|
HEAP_START + (ptr as usize - ALLOC_START) / PAGE_SIZE;
|
|
// Make sure that the address makes sense. The address we
|
|
// calculate here is the page structure, not the HEAP address!
|
|
assert!(addr >= HEAP_START && addr < ALLOC_START);
|
|
let mut p = addr as *mut Page;
|
|
// Keep clearing pages until we hit the last page.
|
|
while (*p).is_taken() && !(*p).is_last() {
|
|
(*p).clear();
|
|
p = p.add(1);
|
|
}
|
|
// If the following assertion fails, it is most likely
|
|
// caused by a double-free.
|
|
assert!(
|
|
(*p).is_last() == true,
|
|
"Possible double-free detected! (Not taken found \
|
|
before last)"
|
|
);
|
|
// If we get here, we've taken care of all previous pages and
|
|
// we are on the last page.
|
|
(*p).clear();
|
|
}
|
|
}
|
|
|
|
/// Print all page allocations
|
|
/// This is mainly used for debugging.
|
|
pub fn print_page_allocations() {
|
|
unsafe {
|
|
let num_pages = (HEAP_SIZE - (ALLOC_START - HEAP_START)) / PAGE_SIZE;
|
|
let mut beg = HEAP_START as *const Page;
|
|
let end = beg.add(num_pages);
|
|
let alloc_beg = ALLOC_START;
|
|
let alloc_end = ALLOC_START + num_pages * PAGE_SIZE;
|
|
println!();
|
|
println!(
|
|
"PAGE ALLOCATION TABLE\nMETA: {:p} -> {:p}\nPHYS: \
|
|
0x{:x} -> 0x{:x}",
|
|
beg, end, alloc_beg, alloc_end
|
|
);
|
|
println!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
|
|
let mut num = 0;
|
|
while beg < end {
|
|
if (*beg).is_taken() {
|
|
let start = beg as usize;
|
|
let memaddr = ALLOC_START
|
|
+ (start - HEAP_START)
|
|
* PAGE_SIZE;
|
|
print!("0x{:x} => ", memaddr);
|
|
loop {
|
|
num += 1;
|
|
if (*beg).is_last() {
|
|
let end = beg as usize;
|
|
let memaddr = ALLOC_START
|
|
+ (end
|
|
- HEAP_START)
|
|
* PAGE_SIZE
|
|
+ PAGE_SIZE - 1;
|
|
print!(
|
|
"0x{:x}: {:>3} page(s)",
|
|
memaddr,
|
|
(end - start + 1)
|
|
);
|
|
println!(".");
|
|
break;
|
|
}
|
|
beg = beg.add(1);
|
|
}
|
|
}
|
|
beg = beg.add(1);
|
|
}
|
|
println!("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
|
|
println!(
|
|
"Allocated: {:>6} pages ({:>10} bytes).",
|
|
num,
|
|
num * PAGE_SIZE
|
|
);
|
|
println!(
|
|
"Free : {:>6} pages ({:>10} bytes).",
|
|
num_pages - num,
|
|
(num_pages - num) * PAGE_SIZE
|
|
);
|
|
println!();
|
|
}
|
|
}
|
|
|
|
// ////////////////////////////////
|
|
// // MMU Routines
|
|
// ////////////////////////////////
|
|
|
|
// Represent (repr) our entry bits as
|
|
// unsigned 64-bit integers.
|
|
#[repr(i64)]
|
|
#[derive(Copy, Clone)]
|
|
pub enum EntryBits {
|
|
None = 0,
|
|
Valid = 1 << 0,
|
|
Read = 1 << 1,
|
|
Write = 1 << 2,
|
|
Execute = 1 << 3,
|
|
User = 1 << 4,
|
|
Global = 1 << 5,
|
|
Access = 1 << 6,
|
|
Dirty = 1 << 7,
|
|
|
|
// Convenience combinations
|
|
ReadWrite = 1 << 1 | 1 << 2,
|
|
ReadExecute = 1 << 1 | 1 << 3,
|
|
ReadWriteExecute = 1 << 1 | 1 << 2 | 1 << 3,
|
|
|
|
// User Convenience Combinations
|
|
UserReadWrite = 1 << 1 | 1 << 2 | 1 << 4,
|
|
UserReadExecute = 1 << 1 | 1 << 3 | 1 << 4,
|
|
UserReadWriteExecute = 1 << 1 | 1 << 2 | 1 << 3 | 1 << 4,
|
|
}
|
|
|
|
// Helper functions to convert the enumeration
|
|
// into an i64, which is what our page table
|
|
// entries will be.
|
|
impl EntryBits {
|
|
pub fn val(self) -> i64 {
|
|
self as i64
|
|
}
|
|
}
|
|
|
|
// A single entry. We're using an i64 so that
|
|
// this will sign-extend rather than zero-extend
|
|
// since RISC-V requires that the reserved sections
|
|
// take on the most significant bit.
|
|
pub struct Entry {
|
|
pub entry: i64,
|
|
}
|
|
|
|
// The Entry structure describes one of the 512 entries per table, which is
|
|
// described in the RISC-V privileged spec Figure 4.18.
|
|
impl Entry {
|
|
pub fn is_valid(&self) -> bool {
|
|
self.get_entry() & EntryBits::Valid.val() != 0
|
|
}
|
|
|
|
// The first bit (bit index #0) is the V bit for
|
|
// valid.
|
|
pub fn is_invalid(&self) -> bool {
|
|
!self.is_valid()
|
|
}
|
|
|
|
// A leaf has one or more RWX bits set
|
|
pub fn is_leaf(&self) -> bool {
|
|
self.get_entry() & 0xe != 0
|
|
}
|
|
|
|
pub fn is_branch(&self) -> bool {
|
|
!self.is_leaf()
|
|
}
|
|
|
|
pub fn set_entry(&mut self, entry: i64) {
|
|
self.entry = entry;
|
|
}
|
|
|
|
pub fn get_entry(&self) -> i64 {
|
|
self.entry
|
|
}
|
|
}
|
|
|
|
// Table represents a single table, which contains 512 (2^9), 64-bit entries.
|
|
pub struct Table {
|
|
pub entries: [Entry; 512],
|
|
}
|
|
|
|
impl Table {
|
|
pub fn len() -> usize {
|
|
512
|
|
}
|
|
}
|
|
|
|
/// Map a virtual address to a physical address using 4096-byte page
|
|
/// size.
|
|
/// root: a mutable reference to the root Table
|
|
/// vaddr: The virtual address to map
|
|
/// paddr: The physical address to map
|
|
/// bits: An OR'd bitset containing the bits the leaf should have.
|
|
/// The bits should contain only the following:
|
|
/// Read, Write, Execute, User, and/or Global
|
|
/// The bits MUST include one or more of the following:
|
|
/// Read, Write, Execute
|
|
/// The valid bit automatically gets added.
|
|
pub fn map(root: &mut Table,
|
|
vaddr: usize,
|
|
paddr: usize,
|
|
bits: i64,
|
|
level: usize)
|
|
{
|
|
// Make sure that Read, Write, or Execute have been provided
|
|
// otherwise, we'll leak memory and always create a page fault.
|
|
assert!(bits & 0xe != 0);
|
|
// Extract out each VPN from the virtual address
|
|
// On the virtual address, each VPN is exactly 9 bits,
|
|
// which is why we use the mask 0x1ff = 0b1_1111_1111 (9 bits)
|
|
let vpn = [
|
|
// VPN[0] = vaddr[20:12]
|
|
(vaddr >> 12) & 0x1ff,
|
|
// VPN[1] = vaddr[29:21]
|
|
(vaddr >> 21) & 0x1ff,
|
|
// VPN[2] = vaddr[38:30]
|
|
(vaddr >> 30) & 0x1ff,
|
|
];
|
|
|
|
// Just like the virtual address, extract the physical address
|
|
// numbers (PPN). However, PPN[2] is different in that it stores
|
|
// 26 bits instead of 9. Therefore, we use,
|
|
// 0x3ff_ffff = 0b11_1111_1111_1111_1111_1111_1111 (26 bits).
|
|
let ppn = [
|
|
// PPN[0] = paddr[20:12]
|
|
(paddr >> 12) & 0x1ff,
|
|
// PPN[1] = paddr[29:21]
|
|
(paddr >> 21) & 0x1ff,
|
|
// PPN[2] = paddr[55:30]
|
|
(paddr >> 30) & 0x3ff_ffff,
|
|
];
|
|
// We will use this as a floating reference so that we can set
|
|
// individual entries as we walk the table.
|
|
let mut v = &mut root.entries[vpn[2]];
|
|
// Now, we're going to traverse the page table and set the bits
|
|
// properly. We expect the root to be valid, however we're required to
|
|
// create anything beyond the root.
|
|
// In Rust, we create a range iterator using the .. operator.
|
|
// The .rev() will reverse the iteration since we need to start with
|
|
// VPN[2] The .. operator is inclusive on start but exclusive on end.
|
|
// So, (0..2) will iterate 0 and 1.
|
|
for i in (level..2).rev() {
|
|
if !v.is_valid() {
|
|
// Allocate a page
|
|
let page = zalloc(1);
|
|
// The page is already aligned by 4,096, so store it
|
|
// directly The page is stored in the entry shifted
|
|
// right by 2 places.
|
|
v.set_entry(
|
|
(page as i64 >> 2)
|
|
| EntryBits::Valid.val(),
|
|
);
|
|
}
|
|
let entry = ((v.get_entry() & !0x3ff) << 2) as *mut Entry;
|
|
v = unsafe { entry.add(vpn[i]).as_mut().unwrap() };
|
|
}
|
|
// When we get here, we should be at VPN[0] and v should be pointing to
|
|
// our entry.
|
|
// The entry structure is Figure 4.18 in the RISC-V Privileged
|
|
// Specification
|
|
let entry = (ppn[2] << 28) as i64 | // PPN[2] = [53:28]
|
|
(ppn[1] << 19) as i64 | // PPN[1] = [27:19]
|
|
(ppn[0] << 10) as i64 | // PPN[0] = [18:10]
|
|
bits | // Specified bits, such as User, Read, Write, etc
|
|
EntryBits::Valid.val() | // Valid bit
|
|
EntryBits::Dirty.val() | // Some machines require this to =1
|
|
EntryBits::Access.val() // Just like dirty, some machines require this
|
|
;
|
|
// Set the entry. V should be set to the correct pointer by the loop
|
|
// above.
|
|
v.set_entry(entry);
|
|
}
|
|
|
|
/// Unmaps and frees all memory associated with a table.
|
|
/// root: The root table to start freeing.
|
|
/// NOTE: This does NOT free root directly. This must be
|
|
/// freed manually.
|
|
/// The reason we don't free the root is because it is
|
|
/// usually embedded into the Process structure.
|
|
pub fn unmap(root: &mut Table) {
|
|
// Start with level 2
|
|
for lv2 in 0..Table::len() {
|
|
let ref entry_lv2 = root.entries[lv2];
|
|
if entry_lv2.is_valid() && entry_lv2.is_branch() {
|
|
// This is a valid entry, so drill down and free.
|
|
let memaddr_lv1 = (entry_lv2.get_entry() & !0x3ff) << 2;
|
|
let table_lv1 = unsafe {
|
|
// Make table_lv1 a mutable reference instead of
|
|
// a pointer.
|
|
(memaddr_lv1 as *mut Table).as_mut().unwrap()
|
|
};
|
|
for lv1 in 0..Table::len() {
|
|
let ref entry_lv1 = table_lv1.entries[lv1];
|
|
if entry_lv1.is_valid() && entry_lv1.is_branch()
|
|
{
|
|
let memaddr_lv0 = (entry_lv1.get_entry()
|
|
& !0x3ff) << 2;
|
|
// The next level is level 0, which
|
|
// cannot have branches, therefore,
|
|
// we free here.
|
|
dealloc(memaddr_lv0 as *mut u8);
|
|
}
|
|
}
|
|
dealloc(memaddr_lv1 as *mut u8);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Walk the page table to convert a virtual address to a
|
|
/// physical address.
|
|
/// If a page fault would occur, this returns None
|
|
/// Otherwise, it returns Some with the physical address.
|
|
pub fn virt_to_phys(root: &Table, vaddr: usize) -> Option<usize> {
|
|
// Walk the page table pointed to by root
|
|
let vpn = [
|
|
// VPN[0] = vaddr[20:12]
|
|
(vaddr >> 12) & 0x1ff,
|
|
// VPN[1] = vaddr[29:21]
|
|
(vaddr >> 21) & 0x1ff,
|
|
// VPN[2] = vaddr[38:30]
|
|
(vaddr >> 30) & 0x1ff,
|
|
];
|
|
|
|
let mut v = &root.entries[vpn[2]];
|
|
for i in (0..=2).rev() {
|
|
if v.is_invalid() {
|
|
// This is an invalid entry, page fault.
|
|
break;
|
|
}
|
|
else if v.is_leaf() {
|
|
// According to RISC-V, a leaf can be at any level.
|
|
|
|
// The offset mask masks off the PPN. Each PPN is 9
|
|
// bits and they start at bit #12. So, our formula
|
|
// 12 + i * 9
|
|
let off_mask = (1 << (12 + i * 9)) - 1;
|
|
let vaddr_pgoff = vaddr & off_mask;
|
|
let addr = ((v.get_entry() << 2) as usize) & !off_mask;
|
|
return Some(addr | vaddr_pgoff);
|
|
}
|
|
// Set v to the next entry which is pointed to by this
|
|
// entry. However, the address was shifted right by 2 places
|
|
// when stored in the page table entry, so we shift it left
|
|
// to get it back into place.
|
|
let entry = ((v.get_entry() & !0x3ff) << 2) as *const Entry;
|
|
// We do i - 1 here, however we should get None or Some() above
|
|
// before we do 0 - 1 = -1.
|
|
v = unsafe { entry.add(vpn[i - 1]).as_ref().unwrap() };
|
|
}
|
|
|
|
// If we get here, we've exhausted all valid tables and haven't
|
|
// found a leaf.
|
|
None
|
|
}
|