1
0
mirror of https://github.com/sgmarz/osblog.git synced 2024-11-23 18:06:20 +04:00

Added input handler..still verbose.

This commit is contained in:
Stephen Marz 2020-05-26 19:57:23 -04:00
parent 7fb9b0525a
commit 04cc2ecf12
2 changed files with 285 additions and 0 deletions

284
risc_v/src/input.rs Executable file
View File

@ -0,0 +1,284 @@
// input.rs
// Input handling.
// Stephen Marz
use crate::virtio::{Queue, MmioOffsets, MMIO_VIRTIO_START, StatusField, VIRTIO_RING_SIZE, Descriptor, VIRTIO_DESC_F_WRITE, VIRTIO_F_RING_EVENT_IDX};
use crate::kmem::kmalloc;
use crate::page::{PAGE_SIZE, zalloc};
use core::mem::size_of;
const EVENT_BUFFER_ELEMENTS: usize = 64;
#[repr(C)]
pub struct Event {
pub event_type: u16,
pub code: u16,
pub value: u32,
}
#[repr(u8)]
pub enum ConfigSelect {
UNSET = 0x00,
IdName = 0x01,
IdSerial = 0x02,
IdDevids = 0x03,
PropBits = 0x10,
EvBits = 0x11,
AbsInfo = 0x12,
}
#[repr(C)]
#[derive(Clone, Copy)]
pub struct AbsInfo {
pub min: u32,
pub max: u32,
pub fuzz: u32,
pub flat: u32,
pub res: u32,
}
#[repr(C)]
#[derive(Clone, Copy)]
pub struct DevIds {
pub bustype: u16,
pub vendor: u16,
pub product: u16,
pub version: u16,
}
#[repr(C)]
#[derive(Clone, Copy)]
pub union ConfigUnion {
pub string: [u8; 128],
pub bitmap: [i8; 128],
pub abs: AbsInfo,
pub ids: DevIds,
}
#[repr(C)]
#[derive(Clone, Copy)]
pub struct Config {
pub select: u8,
pub subsel: u8,
pub size: u8,
reserved: [u8; 5],
pub config: ConfigUnion,
}
#[repr(u8)]
pub enum EventType {
Syn = 0x00,
Key = 0x01,
Rel = 0x02,
Abs = 0x03,
Msc = 0x04,
Sw = 0x05,
Led = 0x11,
Snd = 0x12,
Rep = 0x14,
Ff = 0x15,
Pwr = 0x16,
FfStatus = 0x17,
Max = 0x1f,
}
const EVENT_SIZE: usize = size_of::<Event>();
pub struct Device {
event_queue: *mut Queue,
status_queue: *mut Queue,
dev: *mut u32,
event_idx: u16,
event_ack_used_idx: u16,
event_buffer: *mut Event,
status_idx: u16,
status_ack_used_idx: u16,
status_buffer: *mut Event,
}
pub static mut INPUT_DEVICES: [Option<Device>; 8] = [
None,
None,
None,
None,
None,
None,
None,
None,
];
pub fn setup_input_device(ptr: *mut u32) -> bool {
unsafe {
// We can get the index of the device based on its address.
// 0x1000_1000 is index 0
// 0x1000_2000 is index 1
// ...
// 0x1000_8000 is index 7
// To get the number that changes over, we shift right 12 places (3 hex digits)
let idx = (ptr as usize - MMIO_VIRTIO_START) >> 12;
// [Driver] Device Initialization
// 1. Reset the device (write 0 into status)
ptr.add(MmioOffsets::Status.scale32()).write_volatile(0);
let mut status_bits = StatusField::Acknowledge.val32();
// 2. Set ACKNOWLEDGE status bit
ptr.add(MmioOffsets::Status.scale32()).write_volatile(status_bits);
// 3. Set the DRIVER status bit
status_bits |= StatusField::DriverOk.val32();
ptr.add(MmioOffsets::Status.scale32()).write_volatile(status_bits);
// 4. Read device feature bits, write subset of feature
// bits understood by OS and driver to the device.
let mut host_features = ptr.add(MmioOffsets::HostFeatures.scale32()).read_volatile();
// Turn off EVENT_IDX
host_features &= !(1 << VIRTIO_F_RING_EVENT_IDX);
ptr.add(MmioOffsets::GuestFeatures.scale32()).write_volatile(host_features);
// 5. Set the FEATURES_OK status bit
status_bits |= StatusField::FeaturesOk.val32();
ptr.add(MmioOffsets::Status.scale32()).write_volatile(status_bits);
// 6. Re-read status to ensure FEATURES_OK is still set.
// Otherwise, it doesn't support our features.
let status_ok = ptr.add(MmioOffsets::Status.scale32()).read_volatile();
// If the status field no longer has features_ok set,
// that means that the device couldn't accept
// the features that we request. Therefore, this is
// considered a "failed" state.
if false == StatusField::features_ok(status_ok) {
print!("features fail...");
ptr.add(MmioOffsets::Status.scale32()).write_volatile(StatusField::Failed.val32());
return false;
}
// 7. Perform device-specific setup.
// Set the queue num. We have to make sure that the
// queue size is valid because the device can only take
// a certain size.
let qnmax = ptr.add(MmioOffsets::QueueNumMax.scale32()).read_volatile();
ptr.add(MmioOffsets::QueueNum.scale32()).write_volatile(VIRTIO_RING_SIZE as u32);
if VIRTIO_RING_SIZE as u32 > qnmax {
print!("queue size fail...");
return false;
}
// First, if the block device array is empty, create it!
// We add 4095 to round this up and then do an integer
// divide to truncate the decimal. We don't add 4096,
// because if it is exactly 4096 bytes, we would get two
// pages, not one.
let num_pages = (size_of::<Queue>() + PAGE_SIZE - 1) / PAGE_SIZE;
// println!("np = {}", num_pages);
// We allocate a page for each device. This will the the
// descriptor where we can communicate with the block
// device. We will still use an MMIO register (in
// particular, QueueNotify) to actually tell the device
// we put something in memory. We also have to be
// careful with memory ordering. We don't want to
// issue a notify before all memory writes have
// finished. We will look at that later, but we need
// what is called a memory "fence" or barrier.
ptr.add(MmioOffsets::QueueSel.scale32()).write_volatile(0);
// Alignment is very important here. This is the memory address
// alignment between the available and used rings. If this is wrong,
// then we and the device will refer to different memory addresses
// and hence get the wrong data in the used ring.
// ptr.add(MmioOffsets::QueueAlign.scale32()).write_volatile(2);
let event_queue_ptr = zalloc(num_pages) as *mut Queue;
let queue_pfn = event_queue_ptr as u32;
ptr.add(MmioOffsets::GuestPageSize.scale32()).write_volatile(PAGE_SIZE as u32);
ptr.add(MmioOffsets::QueuePfn.scale32()).write_volatile(queue_pfn / PAGE_SIZE as u32);
// Status queue
ptr.add(MmioOffsets::QueueSel.scale32()).write_volatile(1);
// Alignment is very important here. This is the memory address
// alignment between the available and used rings. If this is wrong,
// then we and the device will refer to different memory addresses
// and hence get the wrong data in the used ring.
// ptr.add(MmioOffsets::QueueAlign.scale32()).write_volatile(2);
let status_queue_ptr = zalloc(num_pages) as *mut Queue;
let queue_pfn = status_queue_ptr as u32;
ptr.add(MmioOffsets::GuestPageSize.scale32()).write_volatile(PAGE_SIZE as u32);
ptr.add(MmioOffsets::QueuePfn.scale32()).write_volatile(queue_pfn / PAGE_SIZE as u32);
// 8. Set the DRIVER_OK status bit. Device is now "live"
status_bits |= StatusField::DriverOk.val32();
ptr.add(MmioOffsets::Status.scale32()).write_volatile(status_bits);
let config_ptr = ptr.add(MmioOffsets::Config.scale32()) as *mut Config;
let mut config = config_ptr.read_volatile();
config.select = ConfigSelect::IdDevids as u8;
config.subsel = 0;
config_ptr.write_volatile(config);
let id = config_ptr.read_volatile().config.ids;
let mut dev = Device {
event_queue: event_queue_ptr,
status_queue: status_queue_ptr,
dev: ptr,
status_idx: 0,
status_ack_used_idx: 0,
status_buffer: kmalloc(EVENT_SIZE * EVENT_BUFFER_ELEMENTS) as *mut Event,
event_idx: 0,
event_ack_used_idx: 0,
event_buffer: kmalloc(EVENT_SIZE * EVENT_BUFFER_ELEMENTS) as *mut Event,
};
for i in 0..EVENT_BUFFER_ELEMENTS {
repopulate_event(&mut dev, i);
}
INPUT_DEVICES[idx] = Some(dev);
true
}
}
unsafe fn repopulate_event(dev: &mut Device, buffer: usize) {
// Populate eventq with buffers, these must be at least the size of struct virtio_input_event.
let desc = Descriptor {
addr: dev.event_buffer.add(buffer) as u64,
len: EVENT_SIZE as u32,
flags: VIRTIO_DESC_F_WRITE,
next: 0
};
let head = dev.event_idx as u16;
(*dev.event_queue).desc[dev.event_idx as usize] = desc;
dev.event_idx = (dev.event_idx + 1) % VIRTIO_RING_SIZE as u16;
(*dev.event_queue).avail.ring[(*dev.event_queue).avail.idx as usize % VIRTIO_RING_SIZE] = head;
(*dev.event_queue).avail.idx = (*dev.event_queue).avail.idx.wrapping_add(1);
}
fn pending(dev: &mut Device) {
// Here we need to check the used ring and then free the resources
// given by the descriptor id.
unsafe {
// Check the event queue first
let ref queue = *dev.event_queue;
while dev.event_ack_used_idx != queue.used.idx {
let ref elem = queue.used.ring[dev.event_ack_used_idx as usize % VIRTIO_RING_SIZE];
let ref desc = queue.desc[elem.id as usize];
let event = (desc.addr as *const Event).as_ref().unwrap();
print!("EAck {}, elem {}, len {}, addr 0x{:08x}: ", dev.event_ack_used_idx, elem.id, elem.len, desc.addr as usize);
println!("Type = {:x}, Code = {:x}, Value = {:x}", event.event_type, event.code, event.value);
repopulate_event(dev, elem.id as usize);
dev.event_ack_used_idx = dev.event_ack_used_idx.wrapping_add(1);
}
// Next, the status queue
let ref queue = *dev.status_queue;
while dev.status_ack_used_idx != queue.used.idx {
let ref elem = queue.used.ring[dev.status_ack_used_idx as usize % VIRTIO_RING_SIZE];
print!("SAck {}, elem {}, len {}: ", dev.status_ack_used_idx, elem.id, elem.len);
let ref desc = queue.desc[elem.id as usize];
let event = (desc.addr as *const Event).as_ref().unwrap();
println!("Type = {:x}, Code = {:x}, Value = {:x}", event.event_type, event.code, event.value);
dev.status_ack_used_idx = dev.status_ack_used_idx.wrapping_add(1);
}
}
}
pub fn handle_interrupt(idx: usize) {
unsafe {
if let Some(bdev) = INPUT_DEVICES[idx].as_mut() {
pending(bdev);
}
else {
println!(
"Invalid input device for interrupt {}",
idx + 1
);
}
}
}

View File

@ -136,6 +136,7 @@ pub mod cpu;
pub mod elf; pub mod elf;
pub mod fs; pub mod fs;
pub mod gpu; pub mod gpu;
pub mod input;
pub mod kmem; pub mod kmem;
pub mod lock; pub mod lock;
pub mod page; pub mod page;