Initial import
This commit is contained in:
parent
5b7a4baf98
commit
f4afe557d6
7
Cargo.toml
Normal file
7
Cargo.toml
Normal file
@ -0,0 +1,7 @@
|
||||
[package]
|
||||
name = "munkres"
|
||||
version = "0.0.1"
|
||||
authors = ["Michael Neumann <mneumann@ntecs.de>"]
|
||||
|
||||
[dependencies]
|
||||
nalgebra = "*"
|
1
LICENSE
1
LICENSE
@ -1,4 +1,5 @@
|
||||
Copyright (c) 2015, Michael Neumann
|
||||
Copyright (c) 2008, Brian M. Clapper (Python version)
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
|
@ -1,2 +1,4 @@
|
||||
# munkres-rs
|
||||
Kuhn-Munkres (aka Hungarian) algorithm for solving the Assignment Problem written in Rust.
|
||||
|
||||
This is a modified port from https://github.com/bmc/munkres.
|
||||
|
766
src/lib.rs
Normal file
766
src/lib.rs
Normal file
@ -0,0 +1,766 @@
|
||||
#![feature(zero_one)]
|
||||
|
||||
/// Kuhn-Munkres Algorithm (also called Hungarian algorithm) for solving the
|
||||
/// Assignment Problem.
|
||||
///
|
||||
/// Copyright (c) 2015 by Michael Neumann (mneumann@ntecs.de).
|
||||
///
|
||||
/// This code is derived from a port of the Python version found here:
|
||||
/// https://github.com/bmc/munkres/blob/master/munkres.py
|
||||
/// which is Copyright (c) 2008 Brian M. Clapper.
|
||||
|
||||
extern crate nalgebra as na;
|
||||
|
||||
use na::{DMat, BaseNum};
|
||||
use std::ops::{Add, Neg, Sub};
|
||||
use std::num::Zero;
|
||||
use std::cmp;
|
||||
|
||||
// XXX: optimize: Use bool array. Use only one array with 2*n entries.
|
||||
//
|
||||
#[derive(Debug)]
|
||||
struct Coverage {
|
||||
n: usize,
|
||||
rows: Vec<bool>,
|
||||
cols: Vec<bool>,
|
||||
}
|
||||
|
||||
impl Coverage {
|
||||
fn n(&self) -> usize { self.n }
|
||||
|
||||
fn new(n: usize) -> Coverage {
|
||||
Coverage {n: n,
|
||||
rows: (0..n).map(|_| false).collect(),
|
||||
cols: (0..n).map(|_| false).collect(),}
|
||||
}
|
||||
|
||||
fn is_covered(&self, pos: (usize, usize)) -> bool {
|
||||
match pos {
|
||||
(row, col) => self.rows[row] || self.cols[col]
|
||||
}
|
||||
}
|
||||
|
||||
fn is_uncovered(&self, pos: (usize, usize)) -> bool {
|
||||
!self.is_covered(pos)
|
||||
}
|
||||
|
||||
fn is_row_covered(&self, row: usize) -> bool {
|
||||
self.rows[row]
|
||||
}
|
||||
|
||||
fn is_col_covered(&self, col: usize) -> bool {
|
||||
self.cols[col]
|
||||
}
|
||||
|
||||
fn cover(&mut self, pos: (usize, usize)) {
|
||||
match pos {
|
||||
(row, col) => {
|
||||
self.cover_row(row);
|
||||
self.cover_col(col);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn cover_col(&mut self, col: usize) {
|
||||
self.cols[col] = true;
|
||||
}
|
||||
|
||||
fn uncover_col(&mut self, col: usize) {
|
||||
self.cols[col] = false;
|
||||
}
|
||||
|
||||
fn cover_row(&mut self, row: usize) {
|
||||
self.rows[row] = true;
|
||||
}
|
||||
|
||||
fn clear(&mut self) {
|
||||
for e in self.rows.iter_mut() { *e = false; }
|
||||
for e in self.cols.iter_mut() { *e = false; }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct WeightMatrix<T: Copy> {
|
||||
n: usize,
|
||||
c: DMat<T>
|
||||
}
|
||||
|
||||
impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
|
||||
fn n(&self) -> usize { self.n }
|
||||
|
||||
fn is_element_zero(&self, pos: (usize, usize)) -> bool {
|
||||
self.c[pos] == T::zero()
|
||||
}
|
||||
|
||||
/// Return the minimum element of row `row`.
|
||||
fn min_of_row(&self, row: usize) -> T {
|
||||
let mut min = self.c[(row, 0)];
|
||||
for col in 1 .. self.n {
|
||||
min = cmp::min(min, self.c[(row, col)]);
|
||||
}
|
||||
min
|
||||
}
|
||||
|
||||
/// Return the minimum element of column `col`.
|
||||
fn min_of_col(&self, col: usize) -> T {
|
||||
let mut min = self.c[(0, col)];
|
||||
for row in 1 .. self.n {
|
||||
min = cmp::min(min, self.c[(row, col)]);
|
||||
}
|
||||
min
|
||||
}
|
||||
|
||||
// Subtract `val` from every element in row `row`.
|
||||
fn sub_row(&mut self, row: usize, val: T) {
|
||||
for col in 0 .. self.n {
|
||||
self.c[(row, col)] = self.c[(row, col)] - val;
|
||||
}
|
||||
}
|
||||
|
||||
// Subtract `val` from every element in column `col`.
|
||||
fn sub_col(&mut self, col: usize, val: T) {
|
||||
for row in 0 .. self.n {
|
||||
self.c[(row, col)] = self.c[(row, col)] - val;
|
||||
}
|
||||
}
|
||||
|
||||
// Add `val` to every element in row `row`.
|
||||
fn add_row(&mut self, row: usize, val: T) {
|
||||
for col in 0 .. self.n {
|
||||
self.c[(row, col)] = self.c[(row, col)] - val;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Find the first uncovered element with value 0 `find_a_zero`
|
||||
fn find_uncovered_zero(&self, cov: &Coverage) -> Option<(usize, usize)> {
|
||||
let n = self.n();
|
||||
// XXX: Refactor into iterator
|
||||
|
||||
for col in 0 .. n {
|
||||
if cov.is_col_covered(col) { continue; }
|
||||
for row in 0..n {
|
||||
if !cov.is_row_covered(row) && self.is_element_zero((row, col)) {
|
||||
return Some((row, col));
|
||||
}
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
/// Find the smallest uncovered value in the matrix
|
||||
fn find_uncovered_min(&self, cov: &Coverage) -> Option<T> {
|
||||
let mut min = None;
|
||||
let n = self.n();
|
||||
// XXX: Refactor into iterator
|
||||
for row in 0 .. n {
|
||||
if cov.is_row_covered(row) { continue; }
|
||||
for col in 0..n {
|
||||
if cov.is_col_covered(col) { continue; }
|
||||
let elm = self.c[(row, col)];
|
||||
min = Some(match min {
|
||||
None => elm,
|
||||
Some(m) => cmp::min(m, elm),
|
||||
});
|
||||
}
|
||||
}
|
||||
return min;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
enum Step {
|
||||
Step1,
|
||||
Step2,
|
||||
Step3,
|
||||
Step4(Option<usize>),
|
||||
Step5(usize, usize),
|
||||
Step6,
|
||||
Done,
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
|
||||
enum Mark {
|
||||
None,
|
||||
Star,
|
||||
Prime
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct MarkMatrix {
|
||||
n: usize,
|
||||
marks: DMat<Mark>
|
||||
}
|
||||
|
||||
impl MarkMatrix {
|
||||
fn new(n: usize) -> MarkMatrix {
|
||||
MarkMatrix {n: n,
|
||||
marks: DMat::from_elem(n, n, Mark::None)}
|
||||
}
|
||||
|
||||
fn n(&self) -> usize { self.n }
|
||||
|
||||
fn toggle_star(&mut self, pos: (usize, usize)) {
|
||||
if self.is_star(pos) {
|
||||
self.unmark(pos);
|
||||
} else {
|
||||
self.star(pos);
|
||||
}
|
||||
}
|
||||
|
||||
fn get(&self, pos: (usize, usize)) -> Mark {
|
||||
self.marks[pos]
|
||||
}
|
||||
|
||||
fn unmark(&mut self, pos: (usize, usize)) {
|
||||
self.marks[pos] = Mark::None;
|
||||
}
|
||||
|
||||
fn star(&mut self, pos: (usize, usize)) {
|
||||
self.marks[pos] = Mark::Star;
|
||||
}
|
||||
|
||||
fn prime(&mut self, pos: (usize, usize)) {
|
||||
self.marks[pos] = Mark::Prime;
|
||||
}
|
||||
|
||||
fn is_star(&self, pos: (usize, usize)) -> bool {
|
||||
match self.marks[pos] {
|
||||
Mark::Star => true,
|
||||
_ => false
|
||||
}
|
||||
}
|
||||
|
||||
fn is_prime(&self, pos: (usize, usize)) -> bool {
|
||||
match self.marks[pos] {
|
||||
Mark::Prime => true,
|
||||
_ => false
|
||||
}
|
||||
}
|
||||
|
||||
fn find_first_star_in_row(&self, row: usize) -> Option<usize> {
|
||||
for col in 0..self.n {
|
||||
if self.is_star((row, col)) {
|
||||
return Some(col);
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
fn find_first_prime_in_row(&self, row: usize) -> Option<usize> {
|
||||
for col in 0..self.n {
|
||||
if self.is_prime((row, col)) {
|
||||
return Some(col);
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
fn find_first_star_in_col(&self, col: usize) -> Option<usize> {
|
||||
for row in 0..self.n {
|
||||
if self.is_star((row, col)) {
|
||||
return Some(row);
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
fn clear_primes(&mut self) {
|
||||
for row in 0..self.n {
|
||||
for col in 0..self.n {
|
||||
if let Mark::Prime = self.marks[(row, col)] {
|
||||
self.marks[(row, col)] = Mark::None;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// For each row of the matrix, find the smallest element and
|
||||
/// subtract it from every element in its row. Go to Step 2.
|
||||
fn step1<T>(c: &mut WeightMatrix<T>) -> Step
|
||||
where T: BaseNum + Ord {
|
||||
let n = c.n();
|
||||
|
||||
for row in 0..n {
|
||||
let min = c.min_of_row(row);
|
||||
c.sub_row(row, min);
|
||||
}
|
||||
|
||||
return Step::Step2;
|
||||
}
|
||||
|
||||
|
||||
/// Find a zero (Z) in the resulting matrix. If there is no starred
|
||||
/// zero in its row or column, star Z. Repeat for each element in the
|
||||
/// matrix. Go to Step 3.
|
||||
fn step2<T>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step
|
||||
where T: BaseNum + Ord + Neg<Output=T> + Eq {
|
||||
let n = c.n();
|
||||
|
||||
assert!(marks.n() == n);
|
||||
assert!(cov.n() == n);
|
||||
|
||||
for row in 0 .. n {
|
||||
if cov.is_row_covered(row) { continue; }
|
||||
for col in 0..n {
|
||||
if cov.is_col_covered(col) { continue; }
|
||||
if c.is_element_zero((row, col)) {
|
||||
marks.star((row, col));
|
||||
cov.cover((row, col));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// clear covers
|
||||
cov.clear();
|
||||
|
||||
return Step::Step3;
|
||||
}
|
||||
|
||||
/// Cover each column containing a starred zero. If K columns are
|
||||
/// covered, the starred zeros describe a complete set of unique
|
||||
/// assignments. In this case, Go to DONE, otherwise, Go to Step 4.
|
||||
fn step3<T>(c: &WeightMatrix<T>, marks: &MarkMatrix, cov: &mut Coverage) -> Step
|
||||
where T: BaseNum + Ord + Neg<Output=T> + Eq {
|
||||
let n = c.n();
|
||||
|
||||
assert!(marks.n() == n);
|
||||
assert!(cov.n() == n);
|
||||
|
||||
let mut count: usize = 0;
|
||||
|
||||
for row in 0..n {
|
||||
for col in 0..n {
|
||||
if marks.is_star((row, col)) {
|
||||
cov.cover_col(col);
|
||||
count += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if count >= n {
|
||||
Step::Done
|
||||
} else {
|
||||
Step::Step4(Some(count))
|
||||
}
|
||||
}
|
||||
|
||||
/// Find a noncovered zero and prime it. If there is no starred zero
|
||||
/// in the row containing this primed zero, Go to Step 5. Otherwise,
|
||||
/// cover this row and uncover the column containing the starred
|
||||
/// zero. Continue in this manner until there are no uncovered zeros
|
||||
/// left. Save the smallest uncovered value and Go to Step 6.
|
||||
fn step4<T>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step
|
||||
where T: BaseNum + Ord + Neg<Output=T> + Eq {
|
||||
|
||||
let n = c.n();
|
||||
|
||||
assert!(marks.n() == n);
|
||||
assert!(cov.n() == n);
|
||||
|
||||
loop {
|
||||
match c.find_uncovered_zero(cov) {
|
||||
None => {
|
||||
return Step::Step6;
|
||||
}
|
||||
Some((row, col)) => {
|
||||
marks.prime((row, col));
|
||||
match marks.find_first_star_in_row(row) {
|
||||
Some(star_col) => {
|
||||
cov.cover_row(row);
|
||||
cov.uncover_col(star_col);
|
||||
}
|
||||
None => {
|
||||
// in Python: self.Z0_r, self.Z0_c
|
||||
return Step::Step5(row, col)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/// Construct a series of alternating primed and starred zeros as
|
||||
/// follows. Let Z0 represent the uncovered primed zero found in Step 4.
|
||||
/// Let Z1 denote the starred zero in the column of Z0 (if any).
|
||||
/// Let Z2 denote the primed zero in the row of Z1 (there will always
|
||||
/// be one). Continue until the series terminates at a primed zero
|
||||
/// that has no starred zero in its column. Unstar each starred zero
|
||||
/// of the series, star each primed zero of the series, erase all
|
||||
/// primes and uncover every line in the matrix. Return to Step 3
|
||||
fn step5<T>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage, z0: (usize, usize)) -> Step
|
||||
where T: BaseNum + Ord + Neg<Output=T> + Eq {
|
||||
|
||||
let n = c.n();
|
||||
|
||||
assert!(marks.n() == n);
|
||||
assert!(cov.n() == n);
|
||||
|
||||
let mut path: Vec<(usize, usize)> = Vec::new();
|
||||
|
||||
path.push(z0);
|
||||
|
||||
loop {
|
||||
let &(prev_row, prev_col) = path.last().unwrap();
|
||||
|
||||
match marks.find_first_star_in_col(prev_col) {
|
||||
Some(row) => {
|
||||
path.push((row, prev_col));
|
||||
|
||||
if let Some(col) = marks.find_first_prime_in_row(row) {
|
||||
path.push((row, col));
|
||||
} else {
|
||||
// XXX
|
||||
panic!("no prime in row");
|
||||
}
|
||||
}
|
||||
None => {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// convert_path
|
||||
for pos in path {
|
||||
marks.toggle_star(pos);
|
||||
}
|
||||
|
||||
cov.clear();
|
||||
marks.clear_primes();
|
||||
return Step::Step3;
|
||||
}
|
||||
|
||||
|
||||
/// Add the value found in Step 4 to every element of each covered
|
||||
/// row, and subtract it from every element of each uncovered column.
|
||||
/// Return to Step 4 without altering any stars, primes, or covered
|
||||
/// lines.
|
||||
fn step6<T>(c: &mut WeightMatrix<T>, cov: &Coverage) -> Step
|
||||
where T: BaseNum + Ord + Neg<Output=T> + Eq + Copy + Neg<Output=T> {
|
||||
|
||||
let n = c.n();
|
||||
assert!(cov.n() == n);
|
||||
|
||||
let minval = c.find_uncovered_min(cov).unwrap();
|
||||
for row in 0..n {
|
||||
if cov.is_row_covered(row) {
|
||||
c.add_row(row, minval);
|
||||
}
|
||||
}
|
||||
for col in 0..n {
|
||||
if !cov.is_col_covered(col) {
|
||||
c.sub_col(col, minval);
|
||||
}
|
||||
}
|
||||
|
||||
return Step::Step4(None);
|
||||
}
|
||||
|
||||
fn compute<T>(weights: &mut WeightMatrix<T>) -> Vec<(usize,usize)>
|
||||
where T: BaseNum + Ord + Neg<Output=T> + Eq + Copy {
|
||||
let n = weights.n();
|
||||
|
||||
let mut marks = MarkMatrix::new(n);
|
||||
let mut coverage = Coverage::new(n);
|
||||
|
||||
let mut step = Step::Step1;
|
||||
loop {
|
||||
match step {
|
||||
Step::Step1 => {
|
||||
step = step1(weights)
|
||||
}
|
||||
Step::Step2 => {
|
||||
step = step2(weights, &mut marks, &mut coverage);
|
||||
}
|
||||
Step::Step3 => {
|
||||
step = step3(weights, &marks, &mut coverage);
|
||||
}
|
||||
Step::Step4(_) => {
|
||||
step = step4(weights, &mut marks, &mut coverage);
|
||||
}
|
||||
Step::Step5(z0_r, z0_c) => {
|
||||
step = step5(weights, &mut marks, &mut coverage, (z0_r, z0_c));
|
||||
}
|
||||
Step::Step6 => {
|
||||
step = step6(weights, &coverage);
|
||||
}
|
||||
Step::Done => {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// now look for the starred elements
|
||||
let mut matching = Vec::with_capacity(n);
|
||||
for row in 0..n {
|
||||
for col in 0..n {
|
||||
if marks.is_star((row, col)) {
|
||||
matching.push((row,col));
|
||||
}
|
||||
}
|
||||
}
|
||||
assert!(matching.len() == n);
|
||||
|
||||
return matching;
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_step1() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[250, 400, 350,
|
||||
400, 600, 350,
|
||||
200, 400, 250]);
|
||||
|
||||
let mut weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
|
||||
let next_step = step1(&mut weights);
|
||||
assert_eq!(Step::Step2, next_step);
|
||||
|
||||
let exp = DMat::from_row_vec(3, 3,
|
||||
&[0, 150, 100,
|
||||
50, 250, 0,
|
||||
0, 200, 50]);
|
||||
|
||||
assert_eq!(exp, weights.c);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_step2() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[0, 150, 100,
|
||||
50, 250, 0,
|
||||
0, 200, 50]);
|
||||
|
||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let mut marks = MarkMatrix::new(weights.n());
|
||||
let mut coverage = Coverage::new(weights.n());
|
||||
|
||||
let next_step = step2(&weights, &mut marks, &mut coverage);
|
||||
assert_eq!(Step::Step3, next_step);
|
||||
|
||||
assert_eq!(true, marks.is_star((0,0)));
|
||||
assert_eq!(false, marks.is_star((0,1)));
|
||||
assert_eq!(false, marks.is_star((0,2)));
|
||||
|
||||
assert_eq!(false, marks.is_star((1,0)));
|
||||
assert_eq!(false, marks.is_star((1,1)));
|
||||
assert_eq!(true, marks.is_star((1,2)));
|
||||
|
||||
assert_eq!(false, marks.is_star((2,0)));
|
||||
assert_eq!(false, marks.is_star((2,1)));
|
||||
assert_eq!(false, marks.is_star((2,2)));
|
||||
|
||||
// coverage was cleared
|
||||
assert_eq!(false, coverage.is_row_covered(0));
|
||||
assert_eq!(false, coverage.is_row_covered(1));
|
||||
assert_eq!(false, coverage.is_row_covered(2));
|
||||
assert_eq!(false, coverage.is_col_covered(0));
|
||||
assert_eq!(false, coverage.is_col_covered(1));
|
||||
assert_eq!(false, coverage.is_col_covered(2));
|
||||
|
||||
/*
|
||||
assert_eq!(true, coverage.is_row_covered(0));
|
||||
assert_eq!(true, coverage.is_row_covered(1));
|
||||
assert_eq!(false, coverage.is_row_covered(2));
|
||||
|
||||
assert_eq!(true, coverage.is_col_covered(0));
|
||||
assert_eq!(false, coverage.is_col_covered(1));
|
||||
assert_eq!(true, coverage.is_col_covered(2));
|
||||
*/
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_step3() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[0, 150, 100,
|
||||
50, 250, 0,
|
||||
0, 200, 50]);
|
||||
|
||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let mut marks = MarkMatrix::new(weights.n());
|
||||
let mut coverage = Coverage::new(weights.n());
|
||||
|
||||
marks.star((0,0));
|
||||
marks.star((1,2));
|
||||
|
||||
let next_step = step3(&weights, &marks, &mut coverage);
|
||||
assert_eq!(Step::Step4(Some(2)), next_step);
|
||||
|
||||
assert_eq!(true, coverage.is_col_covered(0));
|
||||
assert_eq!(false, coverage.is_col_covered(1));
|
||||
assert_eq!(true, coverage.is_col_covered(2));
|
||||
|
||||
assert_eq!(false, coverage.is_row_covered(0));
|
||||
assert_eq!(false, coverage.is_row_covered(1));
|
||||
assert_eq!(false, coverage.is_row_covered(2));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_step4_case1() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[0, 150, 100,
|
||||
50, 250, 0,
|
||||
0, 200, 50]);
|
||||
|
||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let mut marks = MarkMatrix::new(weights.n());
|
||||
let mut coverage = Coverage::new(weights.n());
|
||||
|
||||
marks.star((0,0));
|
||||
marks.star((1,2));
|
||||
coverage.cover_col(0);
|
||||
coverage.cover_col(2);
|
||||
|
||||
let next_step = step4(&weights, &mut marks, &mut coverage);
|
||||
|
||||
assert_eq!(Step::Step6, next_step);
|
||||
|
||||
// coverage did not change.
|
||||
assert_eq!(true, coverage.is_col_covered(0));
|
||||
assert_eq!(false, coverage.is_col_covered(1));
|
||||
assert_eq!(true, coverage.is_col_covered(2));
|
||||
assert_eq!(false, coverage.is_row_covered(0));
|
||||
assert_eq!(false, coverage.is_row_covered(1));
|
||||
assert_eq!(false, coverage.is_row_covered(2));
|
||||
|
||||
// starring did not change.
|
||||
assert_eq!(true, marks.is_star((0,0)));
|
||||
assert_eq!(false, marks.is_star((0,1)));
|
||||
assert_eq!(false, marks.is_star((0,2)));
|
||||
assert_eq!(false, marks.is_star((1,0)));
|
||||
assert_eq!(false, marks.is_star((1,1)));
|
||||
assert_eq!(true, marks.is_star((1,2)));
|
||||
assert_eq!(false, marks.is_star((2,0)));
|
||||
assert_eq!(false, marks.is_star((2,1)));
|
||||
assert_eq!(false, marks.is_star((2,2)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_step6() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[0, 150, 100,
|
||||
50, 250, 0,
|
||||
0, 200, 50]);
|
||||
|
||||
let mut weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let mut marks = MarkMatrix::new(weights.n());
|
||||
let mut coverage = Coverage::new(weights.n());
|
||||
|
||||
marks.star((0,0));
|
||||
marks.star((1,2));
|
||||
coverage.cover_col(0);
|
||||
coverage.cover_col(2);
|
||||
|
||||
let next_step = step6(&mut weights, &coverage);
|
||||
|
||||
assert_eq!(Step::Step4(None), next_step);
|
||||
|
||||
let exp = DMat::from_row_vec(3, 3,
|
||||
&[0, 0, 100,
|
||||
50, 100, 0,
|
||||
0, 50, 50]);
|
||||
|
||||
assert_eq!(exp, weights.c);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_step4_case2() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[0, 0, 100,
|
||||
50, 100, 0,
|
||||
0, 50, 50]);
|
||||
|
||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let mut marks = MarkMatrix::new(weights.n());
|
||||
let mut coverage = Coverage::new(weights.n());
|
||||
|
||||
marks.star((0,0));
|
||||
marks.star((1,2));
|
||||
coverage.cover_col(0);
|
||||
coverage.cover_col(2);
|
||||
|
||||
let next_step = step4(&weights, &mut marks, &mut coverage);
|
||||
|
||||
assert_eq!(Step::Step5(2,0), next_step);
|
||||
|
||||
// coverage DID CHANGE!
|
||||
assert_eq!(false, coverage.is_col_covered(0));
|
||||
assert_eq!(false, coverage.is_col_covered(1));
|
||||
assert_eq!(true, coverage.is_col_covered(2));
|
||||
assert_eq!(true, coverage.is_row_covered(0));
|
||||
assert_eq!(false, coverage.is_row_covered(1));
|
||||
assert_eq!(false, coverage.is_row_covered(2));
|
||||
|
||||
// starring DID CHANGE!
|
||||
assert_eq!(Mark::Star, marks.get((0,0)));
|
||||
assert_eq!(Mark::Prime, marks.get((0,1)));
|
||||
assert_eq!(Mark::None, marks.get((0,2)));
|
||||
assert_eq!(Mark::None, marks.get((1,0)));
|
||||
assert_eq!(Mark::None, marks.get((1,1)));
|
||||
assert_eq!(Mark::Star, marks.get((1,2)));
|
||||
assert_eq!(Mark::Prime, marks.get((2,0)));
|
||||
assert_eq!(Mark::None, marks.get((2,1)));
|
||||
assert_eq!(Mark::None, marks.get((2,2)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_step5() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[0, 0, 100,
|
||||
50, 100, 0,
|
||||
0, 50, 50]);
|
||||
|
||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let mut marks = MarkMatrix::new(weights.n());
|
||||
let mut coverage = Coverage::new(weights.n());
|
||||
|
||||
marks.star((0,0));
|
||||
marks.prime((0,1));
|
||||
marks.star((1,2));
|
||||
marks.prime((2,0));
|
||||
|
||||
coverage.cover_col(2);
|
||||
coverage.cover_row(0);
|
||||
|
||||
let next_step = step5(&weights, &mut marks, &mut coverage, (2,0));
|
||||
assert_eq!(Step::Step3, next_step);
|
||||
|
||||
// coverage DID CHANGE!
|
||||
assert_eq!(false, coverage.is_col_covered(0));
|
||||
assert_eq!(false, coverage.is_col_covered(1));
|
||||
assert_eq!(false, coverage.is_col_covered(2));
|
||||
assert_eq!(false, coverage.is_row_covered(0));
|
||||
assert_eq!(false, coverage.is_row_covered(1));
|
||||
assert_eq!(false, coverage.is_row_covered(2));
|
||||
|
||||
// starring DID CHANGE!
|
||||
assert_eq!(Mark::None, marks.get((0,0)));
|
||||
assert_eq!(Mark::Star, marks.get((0,1)));
|
||||
assert_eq!(Mark::None, marks.get((0,2)));
|
||||
|
||||
assert_eq!(Mark::None, marks.get((1,0)));
|
||||
assert_eq!(Mark::None, marks.get((1,1)));
|
||||
assert_eq!(Mark::Star, marks.get((1,2)));
|
||||
|
||||
assert_eq!(Mark::Star, marks.get((2,0)));
|
||||
assert_eq!(Mark::None, marks.get((2,1)));
|
||||
assert_eq!(Mark::None, marks.get((2,2)));
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_1() {
|
||||
let m = DMat::from_row_vec(3, 3,
|
||||
&[250, 400, 350,
|
||||
400, 600, 350,
|
||||
200, 400, 250]);
|
||||
|
||||
let mut weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
||||
let matching = compute(&mut weights);
|
||||
|
||||
assert_eq!(vec![(0,1), (1,2), (2,0)], matching);
|
||||
}
|
Loading…
Reference in New Issue
Block a user