Use a simple SquareMatrix implementation instead of DMat
This commit is contained in:
parent
6ffaa8f0db
commit
f487672864
113
src/lib.rs
113
src/lib.rs
@ -22,6 +22,9 @@ use na::{DMat, BaseNum};
|
|||||||
use std::ops::{Add, Neg, Sub};
|
use std::ops::{Add, Neg, Sub};
|
||||||
use std::num::Zero;
|
use std::num::Zero;
|
||||||
use std::cmp;
|
use std::cmp;
|
||||||
|
use square_matrix::SquareMatrix;
|
||||||
|
|
||||||
|
mod square_matrix;
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
struct Coverage {
|
struct Coverage {
|
||||||
@ -86,12 +89,16 @@ impl Coverage {
|
|||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
struct WeightMatrix<T: Copy> {
|
struct WeightMatrix<T: Copy> {
|
||||||
n: usize,
|
c: SquareMatrix<T>
|
||||||
c: DMat<T>
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
|
impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
|
||||||
fn n(&self) -> usize { self.n }
|
fn from_row_vec(n: usize, data: Vec<T>) -> WeightMatrix<T> {
|
||||||
|
WeightMatrix{c: SquareMatrix::from_row_vec(n, data)}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn n(&self) -> usize { self.c.n() }
|
||||||
|
|
||||||
fn is_element_zero(&self, pos: (usize, usize)) -> bool {
|
fn is_element_zero(&self, pos: (usize, usize)) -> bool {
|
||||||
self.c[pos] == T::zero()
|
self.c[pos] == T::zero()
|
||||||
@ -100,7 +107,7 @@ impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
|
|||||||
/// Return the minimum element of row `row`.
|
/// Return the minimum element of row `row`.
|
||||||
fn min_of_row(&self, row: usize) -> T {
|
fn min_of_row(&self, row: usize) -> T {
|
||||||
let mut min = self.c[(row, 0)];
|
let mut min = self.c[(row, 0)];
|
||||||
for col in 1 .. self.n {
|
for col in 1 .. self.n() {
|
||||||
min = cmp::min(min, self.c[(row, col)]);
|
min = cmp::min(min, self.c[(row, col)]);
|
||||||
}
|
}
|
||||||
min
|
min
|
||||||
@ -109,7 +116,7 @@ impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
|
|||||||
/// Return the minimum element of column `col`.
|
/// Return the minimum element of column `col`.
|
||||||
fn min_of_col(&self, col: usize) -> T {
|
fn min_of_col(&self, col: usize) -> T {
|
||||||
let mut min = self.c[(0, col)];
|
let mut min = self.c[(0, col)];
|
||||||
for row in 1 .. self.n {
|
for row in 1 .. self.n() {
|
||||||
min = cmp::min(min, self.c[(row, col)]);
|
min = cmp::min(min, self.c[(row, col)]);
|
||||||
}
|
}
|
||||||
min
|
min
|
||||||
@ -117,21 +124,21 @@ impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
|
|||||||
|
|
||||||
// Subtract `val` from every element in row `row`.
|
// Subtract `val` from every element in row `row`.
|
||||||
fn sub_row(&mut self, row: usize, val: T) {
|
fn sub_row(&mut self, row: usize, val: T) {
|
||||||
for col in 0 .. self.n {
|
for col in 0 .. self.n() {
|
||||||
self.c[(row, col)] = self.c[(row, col)] - val;
|
self.c[(row, col)] = self.c[(row, col)] - val;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Subtract `val` from every element in column `col`.
|
// Subtract `val` from every element in column `col`.
|
||||||
fn sub_col(&mut self, col: usize, val: T) {
|
fn sub_col(&mut self, col: usize, val: T) {
|
||||||
for row in 0 .. self.n {
|
for row in 0 .. self.n() {
|
||||||
self.c[(row, col)] = self.c[(row, col)] - val;
|
self.c[(row, col)] = self.c[(row, col)] - val;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Add `val` to every element in row `row`.
|
// Add `val` to every element in row `row`.
|
||||||
fn add_row(&mut self, row: usize, val: T) {
|
fn add_row(&mut self, row: usize, val: T) {
|
||||||
for col in 0 .. self.n {
|
for col in 0 .. self.n() {
|
||||||
self.c[(row, col)] = self.c[(row, col)] - val;
|
self.c[(row, col)] = self.c[(row, col)] - val;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -513,33 +520,30 @@ where T: BaseNum + Ord + Neg<Output=T> + Eq + Copy {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step1() {
|
fn test_step1() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![250, 400, 350,
|
||||||
&[250, 400, 350,
|
400, 600, 350,
|
||||||
400, 600, 350,
|
200, 400, 250];
|
||||||
200, 400, 250]);
|
|
||||||
|
|
||||||
let mut weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
|
|
||||||
let next_step = step1(&mut weights);
|
let next_step = step1(&mut weights);
|
||||||
assert_eq!(Step::Step2, next_step);
|
assert_eq!(Step::Step2, next_step);
|
||||||
|
|
||||||
let exp = DMat::from_row_vec(3, 3,
|
let exp = vec![0, 150, 100,
|
||||||
&[0, 150, 100,
|
50, 250, 0,
|
||||||
50, 250, 0,
|
0, 200, 50];
|
||||||
0, 200, 50]);
|
|
||||||
|
|
||||||
assert_eq!(exp, weights.c);
|
assert_eq!(exp, weights.c.into_vec());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step2() {
|
fn test_step2() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![0, 150, 100,
|
||||||
&[0, 150, 100,
|
50, 250, 0,
|
||||||
50, 250, 0,
|
0, 200, 50];
|
||||||
0, 200, 50]);
|
|
||||||
|
|
||||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let mut marks = MarkMatrix::new(weights.n());
|
let mut marks = MarkMatrix::new(weights.n());
|
||||||
let mut coverage = Coverage::new(weights.n());
|
let mut coverage = Coverage::new(weights.n());
|
||||||
|
|
||||||
@ -579,12 +583,11 @@ fn test_step2() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step3() {
|
fn test_step3() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![0, 150, 100,
|
||||||
&[0, 150, 100,
|
50, 250, 0,
|
||||||
50, 250, 0,
|
0, 200, 50];
|
||||||
0, 200, 50]);
|
|
||||||
|
|
||||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let mut marks = MarkMatrix::new(weights.n());
|
let mut marks = MarkMatrix::new(weights.n());
|
||||||
let mut coverage = Coverage::new(weights.n());
|
let mut coverage = Coverage::new(weights.n());
|
||||||
|
|
||||||
@ -605,12 +608,11 @@ fn test_step3() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step4_case1() {
|
fn test_step4_case1() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![0, 150, 100,
|
||||||
&[0, 150, 100,
|
50, 250, 0,
|
||||||
50, 250, 0,
|
0, 200, 50];
|
||||||
0, 200, 50]);
|
|
||||||
|
|
||||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let mut marks = MarkMatrix::new(weights.n());
|
let mut marks = MarkMatrix::new(weights.n());
|
||||||
let mut coverage = Coverage::new(weights.n());
|
let mut coverage = Coverage::new(weights.n());
|
||||||
|
|
||||||
@ -645,12 +647,11 @@ fn test_step4_case1() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step6() {
|
fn test_step6() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![0, 150, 100,
|
||||||
&[0, 150, 100,
|
50, 250, 0,
|
||||||
50, 250, 0,
|
0, 200, 50];
|
||||||
0, 200, 50]);
|
|
||||||
|
|
||||||
let mut weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let mut marks = MarkMatrix::new(weights.n());
|
let mut marks = MarkMatrix::new(weights.n());
|
||||||
let mut coverage = Coverage::new(weights.n());
|
let mut coverage = Coverage::new(weights.n());
|
||||||
|
|
||||||
@ -663,22 +664,20 @@ fn test_step6() {
|
|||||||
|
|
||||||
assert_eq!(Step::Step4(None), next_step);
|
assert_eq!(Step::Step4(None), next_step);
|
||||||
|
|
||||||
let exp = DMat::from_row_vec(3, 3,
|
let exp = vec![0, 0, 100,
|
||||||
&[0, 0, 100,
|
50, 100, 0,
|
||||||
50, 100, 0,
|
0, 50, 50];
|
||||||
0, 50, 50]);
|
|
||||||
|
|
||||||
assert_eq!(exp, weights.c);
|
assert_eq!(exp, weights.c.into_vec());
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step4_case2() {
|
fn test_step4_case2() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![0, 0, 100,
|
||||||
&[0, 0, 100,
|
50, 100, 0,
|
||||||
50, 100, 0,
|
0, 50, 50];
|
||||||
0, 50, 50]);
|
|
||||||
|
|
||||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let mut marks = MarkMatrix::new(weights.n());
|
let mut marks = MarkMatrix::new(weights.n());
|
||||||
let mut coverage = Coverage::new(weights.n());
|
let mut coverage = Coverage::new(weights.n());
|
||||||
|
|
||||||
@ -713,12 +712,11 @@ fn test_step4_case2() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_step5() {
|
fn test_step5() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![0, 0, 100,
|
||||||
&[0, 0, 100,
|
50, 100, 0,
|
||||||
50, 100, 0,
|
0, 50, 50];
|
||||||
0, 50, 50]);
|
|
||||||
|
|
||||||
let weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let mut marks = MarkMatrix::new(weights.n());
|
let mut marks = MarkMatrix::new(weights.n());
|
||||||
let mut coverage = Coverage::new(weights.n());
|
let mut coverage = Coverage::new(weights.n());
|
||||||
|
|
||||||
@ -758,12 +756,11 @@ fn test_step5() {
|
|||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_1() {
|
fn test_1() {
|
||||||
let m = DMat::from_row_vec(3, 3,
|
let c = vec![250, 400, 350,
|
||||||
&[250, 400, 350,
|
400, 600, 350,
|
||||||
400, 600, 350,
|
200, 400, 250];
|
||||||
200, 400, 250]);
|
|
||||||
|
|
||||||
let mut weights: WeightMatrix<i32> = WeightMatrix{n: 3, c: m};
|
let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
|
||||||
let matching = compute(&mut weights);
|
let matching = compute(&mut weights);
|
||||||
|
|
||||||
assert_eq!(vec![(0,1), (1,2), (2,0)], matching);
|
assert_eq!(vec![(0,1), (1,2), (2,0)], matching);
|
||||||
|
45
src/square_matrix.rs
Normal file
45
src/square_matrix.rs
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
use std::ops::{Index, IndexMut};
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct SquareMatrix<T> {
|
||||||
|
n: usize,
|
||||||
|
data: Vec<T>
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Index<(usize, usize)> for SquareMatrix<T> {
|
||||||
|
type Output = T;
|
||||||
|
|
||||||
|
/// (row, col)
|
||||||
|
#[inline(always)]
|
||||||
|
fn index<'a>(&'a self, pos: (usize, usize)) -> &'a T {
|
||||||
|
match pos {
|
||||||
|
(row, col) => {
|
||||||
|
let idx = row * self.n + col;
|
||||||
|
&self.data[idx]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> IndexMut<(usize, usize)> for SquareMatrix<T> {
|
||||||
|
/// (row, col)
|
||||||
|
#[inline(always)]
|
||||||
|
fn index_mut<'a>(&'a mut self, pos: (usize, usize)) -> &'a mut T {
|
||||||
|
match pos {
|
||||||
|
(row, col) => {
|
||||||
|
let idx = row * self.n + col;
|
||||||
|
&mut self.data[idx]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> SquareMatrix<T> {
|
||||||
|
pub fn from_row_vec(n: usize, data: Vec<T>) -> SquareMatrix<T> {
|
||||||
|
assert!(data.len() == n*n);
|
||||||
|
SquareMatrix {n: n, data: data}
|
||||||
|
}
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn n(&self) -> usize { self.n }
|
||||||
|
pub fn into_vec(self) -> Vec<T> { self.data }
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user