This commit is contained in:
Michael Neumann 2015-10-26 00:12:54 +01:00
parent 9619f69a4e
commit 4ee267acc5
4 changed files with 186 additions and 175 deletions

View File

@ -1,4 +1,4 @@
use ::bit_vec::BitVec; use bit_vec::BitVec;
#[derive(Debug)] #[derive(Debug)]
pub struct Coverage { pub struct Coverage {
@ -16,8 +16,10 @@ impl Coverage {
} }
pub fn new(n: usize) -> Coverage { pub fn new(n: usize) -> Coverage {
Coverage {rows: BitVec::from_elem(n, false), Coverage {
cols: BitVec::from_elem(n, false)} rows: BitVec::from_elem(n, false),
cols: BitVec::from_elem(n, false),
}
} }
#[inline] #[inline]
@ -56,7 +58,7 @@ impl Coverage {
} }
pub fn clear(&mut self) { pub fn clear(&mut self) {
self.rows.clear(); self.rows.clear();
self.cols.clear(); self.cols.clear();
} }
} }

View File

@ -1,7 +1,7 @@
#![feature(zero_one)] #![feature(zero_one)]
#![feature(test)] #![feature(test)]
/// Kuhn-Munkres Algorithm (also called Hungarian algorithm) for solving the /// Kuhn-Munkres Algorithm (also called Hungarian algorithm) for solving the
/// Assignment Problem. /// Assignment Problem.
/// ///
/// Copyright (c) 2015 by Michael Neumann (mneumann@ntecs.de). /// Copyright (c) 2015 by Michael Neumann (mneumann@ntecs.de).
@ -35,22 +35,24 @@ mod mark_matrix;
pub trait WeightNum: Ord + Eq + Copy + Sub<Output=Self> + Add<Output=Self> + Zero {} pub trait WeightNum: Ord + Eq + Copy + Sub<Output=Self> + Add<Output=Self> + Zero {}
impl<T> WeightNum for T impl<T> WeightNum for T
where T: Ord + Eq + Copy + Sub<Output=T> + Add<Output=T> + Zero { } where T: Ord + Eq + Copy + Sub<Output=T> + Add<Output=T> + Zero { }
#[derive(Debug)] #[derive(Debug)]
pub struct WeightMatrix<T: WeightNum> { pub struct WeightMatrix<T: WeightNum> {
c: SquareMatrix<T> c: SquareMatrix<T>,
} }
impl<T: WeightNum> WeightMatrix<T> { impl<T: WeightNum> WeightMatrix<T> {
pub fn from_row_vec(n: usize, data: Vec<T>) -> WeightMatrix<T> { pub fn from_row_vec(n: usize, data: Vec<T>) -> WeightMatrix<T> {
assert!(n > 0); assert!(n > 0);
WeightMatrix{c: SquareMatrix::from_row_vec(n, data)} WeightMatrix { c: SquareMatrix::from_row_vec(n, data) }
} }
#[inline(always)] #[inline(always)]
fn n(&self) -> usize { self.c.n() } fn n(&self) -> usize {
self.c.n()
}
#[inline(always)] #[inline(always)]
fn is_element_zero(&self, pos: (usize, usize)) -> bool { fn is_element_zero(&self, pos: (usize, usize)) -> bool {
@ -65,19 +67,19 @@ impl<T: WeightNum> WeightMatrix<T> {
min = cmp::min(min, val); min = cmp::min(min, val);
} }
min min
} }
// Subtract `val` from every element in row `row`. // Subtract `val` from every element in row `row`.
fn sub_row(&mut self, row: usize, val: T) { fn sub_row(&mut self, row: usize, val: T) {
self.c.map_row(row, |cur| cur - val); self.c.map_row(row, |cur| cur - val);
} }
// Subtract `val` from every element in column `col`. // Subtract `val` from every element in column `col`.
fn sub_col(&mut self, col: usize, val: T) { fn sub_col(&mut self, col: usize, val: T) {
self.c.map_col(col, |cur| cur - val); self.c.map_col(col, |cur| cur - val);
} }
// Add `val` to every element in row `row`. // Add `val` to every element in row `row`.
fn add_row(&mut self, row: usize, val: T) { fn add_row(&mut self, row: usize, val: T) {
self.c.map_row(row, |cur| cur + val); self.c.map_row(row, |cur| cur + val);
} }
@ -86,8 +88,10 @@ impl<T: WeightNum> WeightMatrix<T> {
fn find_uncovered_zero(&self, cov: &Coverage) -> Option<(usize, usize)> { fn find_uncovered_zero(&self, cov: &Coverage) -> Option<(usize, usize)> {
let n = self.n(); let n = self.n();
for col in 0 .. n { for col in 0..n {
if cov.is_col_covered(col) { continue; } if cov.is_col_covered(col) {
continue;
}
for row in 0..n { for row in 0..n {
if !cov.is_row_covered(row) && self.is_element_zero((row, col)) { if !cov.is_row_covered(row) && self.is_element_zero((row, col)) {
return Some((row, col)); return Some((row, col));
@ -102,11 +106,15 @@ impl<T: WeightNum> WeightMatrix<T> {
fn find_uncovered_min(&self, cov: &Coverage) -> Option<T> { fn find_uncovered_min(&self, cov: &Coverage) -> Option<T> {
let mut min = None; let mut min = None;
let n = self.n(); let n = self.n();
for row in 0 .. n { for row in 0..n {
if cov.is_row_covered(row) { continue; } if cov.is_row_covered(row) {
continue;
}
for col in 0..n { for col in 0..n {
if cov.is_col_covered(col) { continue; } if cov.is_col_covered(col) {
let elm = self.c[(row, col)]; continue;
}
let elm = self.c[(row, col)];
min = Some(match min { min = Some(match min {
None => elm, None => elm,
Some(m) => cmp::min(m, elm), Some(m) => cmp::min(m, elm),
@ -148,14 +156,18 @@ fn step1<T: WeightNum>(c: &mut WeightMatrix<T>) -> Step {
/// matrix. Go to Step 3. /// matrix. Go to Step 3.
fn step2<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step { fn step2<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step {
let n = c.n(); let n = c.n();
assert!(marks.n() == n); assert!(marks.n() == n);
assert!(cov.n() == n); assert!(cov.n() == n);
for row in 0 .. n { for row in 0..n {
if cov.is_row_covered(row) { continue; } if cov.is_row_covered(row) {
continue;
}
for col in 0..n { for col in 0..n {
if cov.is_col_covered(col) { continue; } if cov.is_col_covered(col) {
continue;
}
if c.is_element_zero((row, col)) { if c.is_element_zero((row, col)) {
marks.star((row, col)); marks.star((row, col));
cov.cover((row, col)); cov.cover((row, col));
@ -174,7 +186,7 @@ fn step2<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Co
/// assignments. In this case, Go to DONE, otherwise, Go to Step 4. /// assignments. In this case, Go to DONE, otherwise, Go to Step 4.
fn step3<T: WeightNum>(c: &WeightMatrix<T>, marks: &MarkMatrix, cov: &mut Coverage) -> Step { fn step3<T: WeightNum>(c: &WeightMatrix<T>, marks: &MarkMatrix, cov: &mut Coverage) -> Step {
let n = c.n(); let n = c.n();
assert!(marks.n() == n); assert!(marks.n() == n);
assert!(cov.n() == n); assert!(cov.n() == n);
@ -221,13 +233,13 @@ fn step4<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Co
} }
None => { None => {
// in Python: self.Z0_r, self.Z0_c // in Python: self.Z0_r, self.Z0_c
return Step::Step5(row, col) return Step::Step5(row, col);
} }
} }
} }
} }
} }
} }
/// Construct a series of alternating primed and starred zeros as /// Construct a series of alternating primed and starred zeros as
@ -238,7 +250,11 @@ fn step4<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Co
/// that has no starred zero in its column. Unstar each starred zero /// that has no starred zero in its column. Unstar each starred zero
/// of the series, star each primed zero of the series, erase all /// of the series, star each primed zero of the series, erase all
/// primes and uncover every line in the matrix. Return to Step 3 /// primes and uncover every line in the matrix. Return to Step 3
fn step5<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage, z0: (usize, usize)) -> Step { fn step5<T: WeightNum>(c: &WeightMatrix<T>,
marks: &mut MarkMatrix,
cov: &mut Coverage,
z0: (usize, usize))
-> Step {
let n = c.n(); let n = c.n();
assert!(marks.n() == n); assert!(marks.n() == n);
@ -272,7 +288,7 @@ fn step5<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Co
for pos in path { for pos in path {
marks.toggle_star(pos); marks.toggle_star(pos);
} }
cov.clear(); cov.clear();
marks.clear_primes(); marks.clear_primes();
return Step::Step3; return Step::Step3;
@ -287,7 +303,7 @@ fn step6<T: WeightNum>(c: &mut WeightMatrix<T>, cov: &Coverage) -> Step {
let n = c.n(); let n = c.n();
assert!(cov.n() == n); assert!(cov.n() == n);
let minval = c.find_uncovered_min(cov).unwrap(); let minval = c.find_uncovered_min(cov).unwrap();
for row in 0..n { for row in 0..n {
if cov.is_row_covered(row) { if cov.is_row_covered(row) {
c.add_row(row, minval); c.add_row(row, minval);
@ -302,15 +318,15 @@ fn step6<T: WeightNum>(c: &mut WeightMatrix<T>, cov: &Coverage) -> Step {
return Step::Step4(None); return Step::Step4(None);
} }
pub fn solve_assignment<T: WeightNum>(weights: &mut WeightMatrix<T>) -> Vec<(usize,usize)> { pub fn solve_assignment<T: WeightNum>(weights: &mut WeightMatrix<T>) -> Vec<(usize, usize)> {
let n = weights.n(); let n = weights.n();
let mut marks = MarkMatrix::new(n); let mut marks = MarkMatrix::new(n);
let mut coverage = Coverage::new(n); let mut coverage = Coverage::new(n);
let mut step = Step::Step1; let mut step = Step::Step1;
loop { loop {
match step { match step {
Step::Step1 => { Step::Step1 => {
step = step1(weights) step = step1(weights)
} }
@ -332,37 +348,33 @@ pub fn solve_assignment<T: WeightNum>(weights: &mut WeightMatrix<T>) -> Vec<(usi
Step::Done => { Step::Done => {
break; break;
} }
} }
} }
// now look for the starred elements // now look for the starred elements
let mut matching = Vec::with_capacity(n); let mut matching = Vec::with_capacity(n);
for row in 0..n { for row in 0..n {
for col in 0..n { for col in 0..n {
if marks.is_star((row, col)) { if marks.is_star((row, col)) {
matching.push((row,col)); matching.push((row, col));
} }
} }
} }
assert!(matching.len() == n); assert!(matching.len() == n);
return matching; return matching;
} }
#[test] #[test]
fn test_step1() { fn test_step1() {
let c = vec![250, 400, 350, let c = vec![250, 400, 350, 400, 600, 350, 200, 400, 250];
400, 600, 350,
200, 400, 250];
let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let next_step = step1(&mut weights); let next_step = step1(&mut weights);
assert_eq!(Step::Step2, next_step); assert_eq!(Step::Step2, next_step);
let exp = &[0, 150, 100, let exp = &[0, 150, 100, 50, 250, 0, 0, 200, 50];
50, 250, 0,
0, 200, 50];
assert_eq!(exp, weights.c.as_slice()); assert_eq!(exp, weights.c.as_slice());
} }
@ -370,9 +382,7 @@ fn test_step1() {
#[test] #[test]
fn test_step2() { fn test_step2() {
let c = vec![0, 150, 100, let c = vec![0, 150, 100, 50, 250, 0, 0, 200, 50];
50, 250, 0,
0, 200, 50];
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let mut marks = MarkMatrix::new(weights.n()); let mut marks = MarkMatrix::new(weights.n());
@ -381,17 +391,17 @@ fn test_step2() {
let next_step = step2(&weights, &mut marks, &mut coverage); let next_step = step2(&weights, &mut marks, &mut coverage);
assert_eq!(Step::Step3, next_step); assert_eq!(Step::Step3, next_step);
assert_eq!(true, marks.is_star((0,0))); assert_eq!(true, marks.is_star((0, 0)));
assert_eq!(false, marks.is_star((0,1))); assert_eq!(false, marks.is_star((0, 1)));
assert_eq!(false, marks.is_star((0,2))); assert_eq!(false, marks.is_star((0, 2)));
assert_eq!(false, marks.is_star((1,0))); assert_eq!(false, marks.is_star((1, 0)));
assert_eq!(false, marks.is_star((1,1))); assert_eq!(false, marks.is_star((1, 1)));
assert_eq!(true, marks.is_star((1,2))); assert_eq!(true, marks.is_star((1, 2)));
assert_eq!(false, marks.is_star((2,0))); assert_eq!(false, marks.is_star((2, 0)));
assert_eq!(false, marks.is_star((2,1))); assert_eq!(false, marks.is_star((2, 1)));
assert_eq!(false, marks.is_star((2,2))); assert_eq!(false, marks.is_star((2, 2)));
// coverage was cleared // coverage was cleared
assert_eq!(false, coverage.is_row_covered(0)); assert_eq!(false, coverage.is_row_covered(0));
@ -401,29 +411,27 @@ fn test_step2() {
assert_eq!(false, coverage.is_col_covered(1)); assert_eq!(false, coverage.is_col_covered(1));
assert_eq!(false, coverage.is_col_covered(2)); assert_eq!(false, coverage.is_col_covered(2));
/* //
assert_eq!(true, coverage.is_row_covered(0)); // assert_eq!(true, coverage.is_row_covered(0));
assert_eq!(true, coverage.is_row_covered(1)); // assert_eq!(true, coverage.is_row_covered(1));
assert_eq!(false, coverage.is_row_covered(2)); // assert_eq!(false, coverage.is_row_covered(2));
//
assert_eq!(true, coverage.is_col_covered(0)); // assert_eq!(true, coverage.is_col_covered(0));
assert_eq!(false, coverage.is_col_covered(1)); // assert_eq!(false, coverage.is_col_covered(1));
assert_eq!(true, coverage.is_col_covered(2)); // assert_eq!(true, coverage.is_col_covered(2));
*/ //
} }
#[test] #[test]
fn test_step3() { fn test_step3() {
let c = vec![0, 150, 100, let c = vec![0, 150, 100, 50, 250, 0, 0, 200, 50];
50, 250, 0,
0, 200, 50];
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let mut marks = MarkMatrix::new(weights.n()); let mut marks = MarkMatrix::new(weights.n());
let mut coverage = Coverage::new(weights.n()); let mut coverage = Coverage::new(weights.n());
marks.star((0,0)); marks.star((0, 0));
marks.star((1,2)); marks.star((1, 2));
let next_step = step3(&weights, &marks, &mut coverage); let next_step = step3(&weights, &marks, &mut coverage);
assert_eq!(Step::Step4(Some(2)), next_step); assert_eq!(Step::Step4(Some(2)), next_step);
@ -439,16 +447,14 @@ fn test_step3() {
#[test] #[test]
fn test_step4_case1() { fn test_step4_case1() {
let c = vec![0, 150, 100, let c = vec![0, 150, 100, 50, 250, 0, 0, 200, 50];
50, 250, 0,
0, 200, 50];
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let mut marks = MarkMatrix::new(weights.n()); let mut marks = MarkMatrix::new(weights.n());
let mut coverage = Coverage::new(weights.n()); let mut coverage = Coverage::new(weights.n());
marks.star((0,0)); marks.star((0, 0));
marks.star((1,2)); marks.star((1, 2));
coverage.cover_col(0); coverage.cover_col(0);
coverage.cover_col(2); coverage.cover_col(2);
@ -465,29 +471,27 @@ fn test_step4_case1() {
assert_eq!(false, coverage.is_row_covered(2)); assert_eq!(false, coverage.is_row_covered(2));
// starring did not change. // starring did not change.
assert_eq!(true, marks.is_star((0,0))); assert_eq!(true, marks.is_star((0, 0)));
assert_eq!(false, marks.is_star((0,1))); assert_eq!(false, marks.is_star((0, 1)));
assert_eq!(false, marks.is_star((0,2))); assert_eq!(false, marks.is_star((0, 2)));
assert_eq!(false, marks.is_star((1,0))); assert_eq!(false, marks.is_star((1, 0)));
assert_eq!(false, marks.is_star((1,1))); assert_eq!(false, marks.is_star((1, 1)));
assert_eq!(true, marks.is_star((1,2))); assert_eq!(true, marks.is_star((1, 2)));
assert_eq!(false, marks.is_star((2,0))); assert_eq!(false, marks.is_star((2, 0)));
assert_eq!(false, marks.is_star((2,1))); assert_eq!(false, marks.is_star((2, 1)));
assert_eq!(false, marks.is_star((2,2))); assert_eq!(false, marks.is_star((2, 2)));
} }
#[test] #[test]
fn test_step6() { fn test_step6() {
let c = vec![0, 150, 100, let c = vec![0, 150, 100, 50, 250, 0, 0, 200, 50];
50, 250, 0,
0, 200, 50];
let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let mut marks = MarkMatrix::new(weights.n()); let mut marks = MarkMatrix::new(weights.n());
let mut coverage = Coverage::new(weights.n()); let mut coverage = Coverage::new(weights.n());
marks.star((0,0)); marks.star((0, 0));
marks.star((1,2)); marks.star((1, 2));
coverage.cover_col(0); coverage.cover_col(0);
coverage.cover_col(2); coverage.cover_col(2);
@ -495,31 +499,27 @@ fn test_step6() {
assert_eq!(Step::Step4(None), next_step); assert_eq!(Step::Step4(None), next_step);
let exp = &[0, 0, 100, let exp = &[0, 0, 100, 50, 100, 0, 0, 50, 50];
50, 100, 0,
0, 50, 50];
assert_eq!(exp, weights.c.as_slice()); assert_eq!(exp, weights.c.as_slice());
} }
#[test] #[test]
fn test_step4_case2() { fn test_step4_case2() {
let c = vec![0, 0, 100, let c = vec![0, 0, 100, 50, 100, 0, 0, 50, 50];
50, 100, 0,
0, 50, 50];
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let mut marks = MarkMatrix::new(weights.n()); let mut marks = MarkMatrix::new(weights.n());
let mut coverage = Coverage::new(weights.n()); let mut coverage = Coverage::new(weights.n());
marks.star((0,0)); marks.star((0, 0));
marks.star((1,2)); marks.star((1, 2));
coverage.cover_col(0); coverage.cover_col(0);
coverage.cover_col(2); coverage.cover_col(2);
let next_step = step4(&weights, &mut marks, &mut coverage); let next_step = step4(&weights, &mut marks, &mut coverage);
assert_eq!(Step::Step5(2,0), next_step); assert_eq!(Step::Step5(2, 0), next_step);
// coverage DID CHANGE! // coverage DID CHANGE!
assert_eq!(false, coverage.is_col_covered(0)); assert_eq!(false, coverage.is_col_covered(0));
@ -530,36 +530,34 @@ fn test_step4_case2() {
assert_eq!(false, coverage.is_row_covered(2)); assert_eq!(false, coverage.is_row_covered(2));
// starring DID CHANGE! // starring DID CHANGE!
assert_eq!(true, marks.is_star((0,0))); assert_eq!(true, marks.is_star((0, 0)));
assert_eq!(true, marks.is_prime((0,1))); assert_eq!(true, marks.is_prime((0, 1)));
assert_eq!(true, marks.is_none((0,2))); assert_eq!(true, marks.is_none((0, 2)));
assert_eq!(true, marks.is_none((1,0))); assert_eq!(true, marks.is_none((1, 0)));
assert_eq!(true, marks.is_none((1,1))); assert_eq!(true, marks.is_none((1, 1)));
assert_eq!(true, marks.is_star((1,2))); assert_eq!(true, marks.is_star((1, 2)));
assert_eq!(true, marks.is_prime((2,0))); assert_eq!(true, marks.is_prime((2, 0)));
assert_eq!(true, marks.is_none((2,1))); assert_eq!(true, marks.is_none((2, 1)));
assert_eq!(true, marks.is_none((2,2))); assert_eq!(true, marks.is_none((2, 2)));
} }
#[test] #[test]
fn test_step5() { fn test_step5() {
let c = vec![0, 0, 100, let c = vec![0, 0, 100, 50, 100, 0, 0, 50, 50];
50, 100, 0,
0, 50, 50];
let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let mut marks = MarkMatrix::new(weights.n()); let mut marks = MarkMatrix::new(weights.n());
let mut coverage = Coverage::new(weights.n()); let mut coverage = Coverage::new(weights.n());
marks.star((0,0)); marks.star((0, 0));
marks.prime((0,1)); marks.prime((0, 1));
marks.star((1,2)); marks.star((1, 2));
marks.prime((2,0)); marks.prime((2, 0));
coverage.cover_col(2); coverage.cover_col(2);
coverage.cover_row(0); coverage.cover_row(0);
let next_step = step5(&weights, &mut marks, &mut coverage, (2,0)); let next_step = step5(&weights, &mut marks, &mut coverage, (2, 0));
assert_eq!(Step::Step3, next_step); assert_eq!(Step::Step3, next_step);
// coverage DID CHANGE! // coverage DID CHANGE!
@ -571,30 +569,28 @@ fn test_step5() {
assert_eq!(false, coverage.is_row_covered(2)); assert_eq!(false, coverage.is_row_covered(2));
// starring DID CHANGE! // starring DID CHANGE!
assert_eq!(true, marks.is_none((0,0))); assert_eq!(true, marks.is_none((0, 0)));
assert_eq!(true, marks.is_star((0,1))); assert_eq!(true, marks.is_star((0, 1)));
assert_eq!(true, marks.is_none((0,2))); assert_eq!(true, marks.is_none((0, 2)));
assert_eq!(true, marks.is_none((1,0))); assert_eq!(true, marks.is_none((1, 0)));
assert_eq!(true, marks.is_none((1,1))); assert_eq!(true, marks.is_none((1, 1)));
assert_eq!(true, marks.is_star((1,2))); assert_eq!(true, marks.is_star((1, 2)));
assert_eq!(true, marks.is_star((2,0))); assert_eq!(true, marks.is_star((2, 0)));
assert_eq!(true, marks.is_none((2,1))); assert_eq!(true, marks.is_none((2, 1)));
assert_eq!(true, marks.is_none((2,2))); assert_eq!(true, marks.is_none((2, 2)));
} }
#[test] #[test]
fn test_solve() { fn test_solve() {
let c = vec![250, 400, 350, let c = vec![250, 400, 350, 400, 600, 350, 200, 400, 250];
400, 600, 350,
200, 400, 250];
let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c); let mut weights: WeightMatrix<i32> = WeightMatrix::from_row_vec(3, c);
let matching = solve_assignment(&mut weights); let matching = solve_assignment(&mut weights);
assert_eq!(vec![(0,1), (1,2), (2,0)], matching); assert_eq!(vec![(0, 1), (1, 2), (2, 0)], matching);
} }
#[test] #[test]
@ -620,24 +616,25 @@ fn test_solve_random10() {
let mut cost = 0; let mut cost = 0;
for &(row, col) in &matching[..] { for &(row, col) in &matching[..] {
cost += c[row*N + col]; cost += c[row * N + col];
} }
assert_eq!(1071, cost); assert_eq!(1071, cost);
let exp = &[(0, 7), (1, 9), (2, 3), (3, 4), (4, 1), let exp = &[(0, 7), (1, 9), (2, 3), (3, 4), (4, 1), (5, 0), (6, 5), (7, 6), (8, 2), (9, 8)];
(5, 0), (6, 5), (7, 6), (8, 2), (9, 8)];
assert_eq!(exp, &matching[..]); assert_eq!(exp, &matching[..]);
} }
#[cfg(test)] #[cfg(test)]
fn gen_matrix(n: usize) -> Vec<i32> { fn gen_matrix(n: usize) -> Vec<i32> {
(0..n*n).map(|i| { (0..n * n)
let row = i/n; .map(|i| {
let col = i%n; let row = i / n;
(row * col) as i32 let col = i % n;
}).collect() (row * col) as i32
})
.collect()
} }
#[cfg(test)] #[cfg(test)]

View File

@ -1,25 +1,30 @@
use ::square_matrix::SquareMatrix; use square_matrix::SquareMatrix;
#[derive(Clone, Copy, PartialEq, Eq, Debug)] #[derive(Clone, Copy, PartialEq, Eq, Debug)]
enum Mark { enum Mark {
None, None,
Star, Star,
Prime Prime,
} }
#[derive(Debug)] #[derive(Debug)]
pub struct MarkMatrix { pub struct MarkMatrix {
marks: SquareMatrix<Mark> marks: SquareMatrix<Mark>,
} }
// XXX: Use two bitmatrices. Each row has a fixed number of u64 integers. Use bit-search // XXX: Use two bitmatrices. Each row has a fixed number of u64 integers. Use
// bit-search
impl MarkMatrix { impl MarkMatrix {
pub fn new(n: usize) -> MarkMatrix { pub fn new(n: usize) -> MarkMatrix {
MarkMatrix {marks: SquareMatrix::from_row_vec(n, (0..n*n).map(|_| Mark::None).collect())} MarkMatrix {
marks: SquareMatrix::from_row_vec(n, (0..n * n).map(|_| Mark::None).collect()),
}
} }
pub fn n(&self) -> usize { self.marks.n() } pub fn n(&self) -> usize {
self.marks.n()
}
pub fn toggle_star(&mut self, pos: (usize, usize)) { pub fn toggle_star(&mut self, pos: (usize, usize)) {
if self.is_star(pos) { if self.is_star(pos) {
@ -30,28 +35,28 @@ impl MarkMatrix {
} }
pub fn unmark(&mut self, pos: (usize, usize)) { pub fn unmark(&mut self, pos: (usize, usize)) {
self.marks[pos] = Mark::None; self.marks[pos] = Mark::None;
} }
pub fn star(&mut self, pos: (usize, usize)) { pub fn star(&mut self, pos: (usize, usize)) {
self.marks[pos] = Mark::Star; self.marks[pos] = Mark::Star;
} }
pub fn prime(&mut self, pos: (usize, usize)) { pub fn prime(&mut self, pos: (usize, usize)) {
self.marks[pos] = Mark::Prime; self.marks[pos] = Mark::Prime;
} }
pub fn is_star(&self, pos: (usize, usize)) -> bool { pub fn is_star(&self, pos: (usize, usize)) -> bool {
match self.marks[pos] { match self.marks[pos] {
Mark::Star => true, Mark::Star => true,
_ => false _ => false,
} }
} }
pub fn is_prime(&self, pos: (usize, usize)) -> bool { pub fn is_prime(&self, pos: (usize, usize)) -> bool {
match self.marks[pos] { match self.marks[pos] {
Mark::Prime => true, Mark::Prime => true,
_ => false _ => false,
} }
} }
@ -59,7 +64,7 @@ impl MarkMatrix {
pub fn is_none(&self, pos: (usize, usize)) -> bool { pub fn is_none(&self, pos: (usize, usize)) -> bool {
match self.marks[pos] { match self.marks[pos] {
Mark::None => true, Mark::None => true,
_ => false _ => false,
} }
} }

View File

@ -3,7 +3,7 @@ use std::ops::{Index, IndexMut};
#[derive(Debug)] #[derive(Debug)]
pub struct SquareMatrix<T> { pub struct SquareMatrix<T> {
n: usize, n: usize,
data: Box<[T]> data: Box<[T]>,
} }
impl<T> Index<(usize, usize)> for SquareMatrix<T> { impl<T> Index<(usize, usize)> for SquareMatrix<T> {
@ -35,31 +35,38 @@ impl<T> IndexMut<(usize, usize)> for SquareMatrix<T> {
} }
impl<T: Copy> SquareMatrix<T> { impl<T: Copy> SquareMatrix<T> {
pub fn from_fn<F: Fn((usize,usize)) -> T>(n: usize, f: F) -> SquareMatrix<T> { pub fn from_fn<F: Fn((usize, usize)) -> T>(n: usize, f: F) -> SquareMatrix<T> {
let data = (0..n*n).map(|i| f((i/n, i%n))).collect(); let data = (0..n * n).map(|i| f((i / n, i % n))).collect();
SquareMatrix::from_row_vec(n, data) SquareMatrix::from_row_vec(n, data)
} }
pub fn from_row_vec(n: usize, data: Vec<T>) -> SquareMatrix<T> { pub fn from_row_vec(n: usize, data: Vec<T>) -> SquareMatrix<T> {
assert!(n > 0); assert!(n > 0);
assert!(data.len() == n*n); assert!(data.len() == n * n);
SquareMatrix {n: n, data: data.into_boxed_slice()} SquareMatrix {
n: n,
data: data.into_boxed_slice(),
}
} }
#[inline(always)] #[inline(always)]
pub fn n(&self) -> usize { self.n } pub fn n(&self) -> usize {
self.n
}
pub fn as_slice<'a>(&'a self) -> &'a[T] { &self.data[..] } pub fn as_slice<'a>(&'a self) -> &'a [T] {
&self.data[..]
}
#[inline] #[inline]
pub fn row_slice(&self, row: usize) -> &[T] { pub fn row_slice(&self, row: usize) -> &[T] {
&self.data[row*self.n .. (row+1)*self.n] &self.data[row * self.n..(row + 1) * self.n]
} }
#[inline] #[inline]
pub fn row_slice_mut(&mut self, row: usize) -> &mut [T] { pub fn row_slice_mut(&mut self, row: usize) -> &mut [T] {
&mut self.data[row*self.n .. (row+1)*self.n] &mut self.data[row * self.n..(row + 1) * self.n]
} }
#[inline] #[inline]
pub fn map_row<F: Fn(T) -> T>(&mut self, row: usize, f: F) { pub fn map_row<F: Fn(T) -> T>(&mut self, row: usize, f: F) {
let n = self.n; let n = self.n;