Get rid of nalgebra. Simplify traits

This commit is contained in:
Michael Neumann 2015-10-19 23:31:40 +02:00
parent 6d85e2b944
commit 0517aa474b
2 changed files with 15 additions and 24 deletions

View File

@ -4,5 +4,4 @@ version = "0.0.1"
authors = ["Michael Neumann <mneumann@ntecs.de>"]
[dependencies]
nalgebra = "*"
bit-vec = "*"

View File

@ -11,15 +11,12 @@
// TODO:
// * Implement SquareMatrix. Get rid of nalgebra.
// * Reuse path Vec in step5
// * Cleanup
extern crate nalgebra as na;
extern crate bit_vec;
use na::{DMat, BaseNum};
use std::ops::{Neg, Sub};
use std::ops::{Add, Sub};
use std::num::Zero;
use std::cmp;
use square_matrix::SquareMatrix;
@ -28,12 +25,17 @@ use coverage::Coverage;
mod square_matrix;
mod coverage;
pub trait WeightNum: Ord + Eq + Copy + Sub<Output=Self> + Add<Output=Self> + Zero {}
impl<T> WeightNum for T
where T: Ord + Eq + Copy + Sub<Output=T> + Add<Output=T> + Zero { }
#[derive(Debug)]
pub struct WeightMatrix<T: Copy> {
pub struct WeightMatrix<T: WeightNum> {
c: SquareMatrix<T>
}
impl<T> WeightMatrix<T> where T: BaseNum + Ord + Eq + Sub<Output=T> + Copy {
impl<T: WeightNum> WeightMatrix<T> {
pub fn from_row_vec(n: usize, data: Vec<T>) -> WeightMatrix<T> {
WeightMatrix{c: SquareMatrix::from_row_vec(n, data)}
}
@ -229,8 +231,7 @@ impl MarkMatrix {
/// For each row of the matrix, find the smallest element and
/// subtract it from every element in its row. Go to Step 2.
fn step1<T>(c: &mut WeightMatrix<T>) -> Step
where T: BaseNum + Ord {
fn step1<T: WeightNum>(c: &mut WeightMatrix<T>) -> Step {
let n = c.n();
for row in 0..n {
@ -245,8 +246,7 @@ where T: BaseNum + Ord {
/// Find a zero (Z) in the resulting matrix. If there is no starred
/// zero in its row or column, star Z. Repeat for each element in the
/// matrix. Go to Step 3.
fn step2<T>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step
where T: BaseNum + Ord + Neg<Output=T> + Eq {
fn step2<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step {
let n = c.n();
assert!(marks.n() == n);
@ -272,8 +272,7 @@ where T: BaseNum + Ord + Neg<Output=T> + Eq {
/// Cover each column containing a starred zero. If K columns are
/// covered, the starred zeros describe a complete set of unique
/// assignments. In this case, Go to DONE, otherwise, Go to Step 4.
fn step3<T>(c: &WeightMatrix<T>, marks: &MarkMatrix, cov: &mut Coverage) -> Step
where T: BaseNum + Ord + Neg<Output=T> + Eq {
fn step3<T: WeightNum>(c: &WeightMatrix<T>, marks: &MarkMatrix, cov: &mut Coverage) -> Step {
let n = c.n();
assert!(marks.n() == n);
@ -302,9 +301,7 @@ where T: BaseNum + Ord + Neg<Output=T> + Eq {
/// cover this row and uncover the column containing the starred
/// zero. Continue in this manner until there are no uncovered zeros
/// left. Save the smallest uncovered value and Go to Step 6.
fn step4<T>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step
where T: BaseNum + Ord + Neg<Output=T> + Eq {
fn step4<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage) -> Step {
let n = c.n();
assert!(marks.n() == n);
@ -341,9 +338,7 @@ where T: BaseNum + Ord + Neg<Output=T> + Eq {
/// that has no starred zero in its column. Unstar each starred zero
/// of the series, star each primed zero of the series, erase all
/// primes and uncover every line in the matrix. Return to Step 3
fn step5<T>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage, z0: (usize, usize)) -> Step
where T: BaseNum + Ord + Neg<Output=T> + Eq {
fn step5<T: WeightNum>(c: &WeightMatrix<T>, marks: &mut MarkMatrix, cov: &mut Coverage, z0: (usize, usize)) -> Step {
let n = c.n();
assert!(marks.n() == n);
@ -388,9 +383,7 @@ where T: BaseNum + Ord + Neg<Output=T> + Eq {
/// row, and subtract it from every element of each uncovered column.
/// Return to Step 4 without altering any stars, primes, or covered
/// lines.
fn step6<T>(c: &mut WeightMatrix<T>, cov: &Coverage) -> Step
where T: BaseNum + Ord + Neg<Output=T> + Eq + Copy + Neg<Output=T> {
fn step6<T: WeightNum>(c: &mut WeightMatrix<T>, cov: &Coverage) -> Step {
let n = c.n();
assert!(cov.n() == n);
@ -409,8 +402,7 @@ where T: BaseNum + Ord + Neg<Output=T> + Eq + Copy + Neg<Output=T> {
return Step::Step4(None);
}
pub fn solve_assignment<T>(weights: &mut WeightMatrix<T>) -> Vec<(usize,usize)>
where T: BaseNum + Ord + Neg<Output=T> + Eq + Copy {
pub fn solve_assignment<T: WeightNum>(weights: &mut WeightMatrix<T>) -> Vec<(usize,usize)> {
let n = weights.n();
let mut marks = MarkMatrix::new(n);