kdtree-rust/tests/integration_tests.rs

83 lines
2.2 KiB
Rust

extern crate kdtree;
extern crate rand;
use rand::Rng;
use kdtree::kdtree::*;
//these could be taken from test_common, but I dont fully understand the module thingy yet.
#[derive(Copy, Clone, PartialEq)]
pub struct Point3WithId {
dims: [f64; 3],
pub id: i32,
}
impl Point3WithId {
pub fn new(id: i32, x: f64, y: f64, z: f64) -> Point3WithId {
Point3WithId {
dims: [x, y, z],
id: id,
}
}
}
impl KdtreePointTrait for Point3WithId {
fn dims(&self) -> &[f64] {
return &self.dims;
}
}
fn gen_random() -> f64 {
rand::thread_rng().gen_range(0., 10000.)
}
fn gen_random_usize( max_value : usize) -> usize {
rand::thread_rng().gen_range(0usize, max_value)
}
fn find_nn_with_linear_search<'a>(points : &'a Vec<Point3WithId>, find_for : Point3WithId) -> &Point3WithId {
let distance_fun = kdtree::kdtree::distance::squared_euclidean;
let mut best_found_distance = distance_fun(find_for.dims(), points[0].dims());
let mut closed_found_point = &points[0];
for p in points {
let dist = distance_fun(find_for.dims(), p.dims());
if dist < best_found_distance {
best_found_distance = dist;
closed_found_point = &p;
}
}
closed_found_point
}
#[test]
fn test_against_1000_random_points() {
let mut points : Vec<Point3WithId> = vec![];
let point_count = 1000usize;
for i in 0 .. point_count {
points.push(Point3WithId::new(i as i32, gen_random(),gen_random(),gen_random()));
}
let tree = kdtree::kdtree::Kdtree::new(&mut points.clone());
//test points pushed into the tree, id should be equal.
for i in 0 .. point_count {
let p = &points[i];
assert_eq!(p.id, tree.nearest_search(p).id );
}
//test randomly generated points within the cube. and do the linear search. should match
for _ in 0 .. 500 {
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
let found_by_linear_search = find_nn_with_linear_search(&points, p);
let point_found_by_kdtree = tree.nearest_search(&p);
assert_eq!(point_found_by_kdtree.id, found_by_linear_search.id);
}
}