mirror of
https://github.com/andreytkachenko/kdtree-rust.git
synced 2024-11-29 04:43:36 +04:00
149 lines
4.2 KiB
Rust
149 lines
4.2 KiB
Rust
use rand::Rng;
|
|
|
|
use kdtree::kdtree::test_common::*;
|
|
use kdtree::kdtree::KdTreePoint;
|
|
use kdtree::kdtree::KdTree;
|
|
|
|
fn gen_random() -> f64 {
|
|
rand::thread_rng().gen_range(0., 1000.)
|
|
}
|
|
|
|
fn find_nn_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId) -> (f64, &Point3WithId) {
|
|
let mut best_found_distance = find_for.dist(&points[0]);
|
|
let mut closed_found_point = &points[0];
|
|
|
|
for p in points {
|
|
let dist = find_for.dist(p);
|
|
|
|
if dist < best_found_distance {
|
|
best_found_distance = dist;
|
|
closed_found_point = &p;
|
|
}
|
|
}
|
|
|
|
(best_found_distance, closed_found_point)
|
|
}
|
|
|
|
fn find_neigbours_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId, dist: f64) -> Vec<(f64, &Point3WithId)> {
|
|
let mut result = Vec::new();
|
|
|
|
for p in points {
|
|
let d = find_for.dist(p);
|
|
|
|
if d <= dist {
|
|
result.push((d, p));
|
|
}
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
fn generate_points(point_count : usize) -> Vec<Point3WithId> {
|
|
let mut points : Vec<Point3WithId> = vec![];
|
|
|
|
for i in 0 .. point_count {
|
|
points.push(Point3WithId::new(i as i32, gen_random(),gen_random(),gen_random()));
|
|
}
|
|
|
|
points
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_against_1000_random_points() {
|
|
let point_count = 1000usize;
|
|
let points = generate_points(point_count);
|
|
Point1WithId::new(0,0.);
|
|
|
|
let tree = KdTree::new(&mut points.clone());
|
|
|
|
//test points pushed into the tree, id should be equal.
|
|
for i in 0 .. point_count {
|
|
let p = &points[i];
|
|
|
|
assert_eq!(p.id, tree.nearest_search(p).1.id );
|
|
}
|
|
|
|
//test randomly generated points within the cube. and do the linear search. should match
|
|
for _ in 0 .. 500 {
|
|
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
|
|
|
|
let found_by_linear_search = find_nn_with_linear_search(&points, p);
|
|
let point_found_by_kdtree = tree.nearest_search(&p);
|
|
|
|
assert_eq!(point_found_by_kdtree.1.id, found_by_linear_search.1.id);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_incrementally_build_tree_against_built_at_once() {
|
|
let point_count = 2000usize;
|
|
let mut points = generate_points(point_count);
|
|
|
|
let tree_built_at_once = KdTree::new(&mut points.clone());
|
|
let mut tree_built_incrementally = KdTree::new(&mut points[0..1]);
|
|
|
|
for i in 1 .. point_count {
|
|
let p = &points[i];
|
|
|
|
tree_built_incrementally.insert_node(p.clone());
|
|
}
|
|
|
|
|
|
//test points pushed into the tree, id should be equal.
|
|
for i in 0 .. point_count {
|
|
let p = &points[i];
|
|
|
|
assert_eq!(tree_built_at_once.nearest_search(p).1.id, tree_built_incrementally.nearest_search(p).1.id);
|
|
}
|
|
|
|
|
|
//test randomly generated points within the cube. and do the linear search. should match
|
|
for _ in 0 .. 5000 {
|
|
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
|
|
assert_eq!(tree_built_at_once.nearest_search(&p).1.id, tree_built_incrementally.nearest_search(&p).1.id);
|
|
}
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_neighbour_search_with_distance() {
|
|
let point_count = 1000usize;
|
|
let points = generate_points(point_count);
|
|
let tree = KdTree::new(&mut points.clone());
|
|
|
|
for _ in 0 .. 500 {
|
|
let dist = 100.0;
|
|
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
|
|
|
|
let mut found_by_linear_search = find_neigbours_with_linear_search(&points, p, dist * dist);
|
|
let mut point_found_by_kdtree: Vec<_> = tree.nearest_search_dist(p, dist * dist).collect();
|
|
|
|
assert_eq!(found_by_linear_search.len(), point_found_by_kdtree.len());
|
|
|
|
if point_found_by_kdtree.len() > 0 {
|
|
found_by_linear_search.sort_by(|a, b| a.1.id.cmp(&b.1.id));
|
|
point_found_by_kdtree.sort_by(|a, b| a.1.id.cmp(&b.1.id));
|
|
}
|
|
|
|
assert_eq!(point_found_by_kdtree, found_by_linear_search);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_non_array_struct() {
|
|
// Arrange
|
|
let mut features = vec![];
|
|
for i in 0..100{
|
|
features.push( Features::new(1.*i as f64, 2.*i as f64, 3. * i as f64, 2. * i as f64, 1. * i as f64) );
|
|
}
|
|
let kd = KdTree::new(&mut features);
|
|
|
|
// Act
|
|
let ref test_feature = Features::new(0., 0., 0., 0., 0.);
|
|
let (distance, feature) = kd.nearest_search(test_feature);
|
|
|
|
// Assert
|
|
assert_eq!(test_feature, feature);
|
|
}
|