kdtree-rust/tests/integration_tests.rs
2021-03-10 18:29:01 +04:00

149 lines
4.2 KiB
Rust

use rand::Rng;
use kdtree::kdtree::test_common::*;
use kdtree::kdtree::KdTreePoint;
use kdtree::kdtree::KdTree;
fn gen_random() -> f64 {
rand::thread_rng().gen_range(0., 1000.)
}
fn find_nn_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId) -> (f64, &Point3WithId) {
let mut best_found_distance = find_for.dist(&points[0]);
let mut closed_found_point = &points[0];
for p in points {
let dist = find_for.dist(p);
if dist < best_found_distance {
best_found_distance = dist;
closed_found_point = &p;
}
}
(best_found_distance, closed_found_point)
}
fn find_neigbours_with_linear_search(points : &Vec<Point3WithId>, find_for : Point3WithId, dist: f64) -> Vec<(f64, &Point3WithId)> {
let mut result = Vec::new();
for p in points {
let d = find_for.dist(p);
if d <= dist {
result.push((d, p));
}
}
result
}
fn generate_points(point_count : usize) -> Vec<Point3WithId> {
let mut points : Vec<Point3WithId> = vec![];
for i in 0 .. point_count {
points.push(Point3WithId::new(i as i32, gen_random(),gen_random(),gen_random()));
}
points
}
#[test]
fn test_against_1000_random_points() {
let point_count = 1000usize;
let points = generate_points(point_count);
Point1WithId::new(0,0.);
let tree = KdTree::new(&mut points.clone());
//test points pushed into the tree, id should be equal.
for i in 0 .. point_count {
let p = &points[i];
assert_eq!(p.id, tree.nearest_search(p).1.id );
}
//test randomly generated points within the cube. and do the linear search. should match
for _ in 0 .. 500 {
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
let found_by_linear_search = find_nn_with_linear_search(&points, p);
let point_found_by_kdtree = tree.nearest_search(&p);
assert_eq!(point_found_by_kdtree.1.id, found_by_linear_search.1.id);
}
}
#[test]
fn test_incrementally_build_tree_against_built_at_once() {
let point_count = 2000usize;
let mut points = generate_points(point_count);
let tree_built_at_once = KdTree::new(&mut points.clone());
let mut tree_built_incrementally = KdTree::new(&mut points[0..1]);
for i in 1 .. point_count {
let p = &points[i];
tree_built_incrementally.insert_node(p.clone());
}
//test points pushed into the tree, id should be equal.
for i in 0 .. point_count {
let p = &points[i];
assert_eq!(tree_built_at_once.nearest_search(p).1.id, tree_built_incrementally.nearest_search(p).1.id);
}
//test randomly generated points within the cube. and do the linear search. should match
for _ in 0 .. 5000 {
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
assert_eq!(tree_built_at_once.nearest_search(&p).1.id, tree_built_incrementally.nearest_search(&p).1.id);
}
}
#[test]
fn test_neighbour_search_with_distance() {
let point_count = 1000usize;
let points = generate_points(point_count);
let tree = KdTree::new(&mut points.clone());
for _ in 0 .. 500 {
let dist = 100.0;
let p = Point3WithId::new(0i32, gen_random(), gen_random(), gen_random());
let mut found_by_linear_search = find_neigbours_with_linear_search(&points, p, dist * dist);
let mut point_found_by_kdtree: Vec<_> = tree.nearest_search_dist(p, dist * dist).collect();
assert_eq!(found_by_linear_search.len(), point_found_by_kdtree.len());
if point_found_by_kdtree.len() > 0 {
found_by_linear_search.sort_by(|a, b| a.1.id.cmp(&b.1.id));
point_found_by_kdtree.sort_by(|a, b| a.1.id.cmp(&b.1.id));
}
assert_eq!(point_found_by_kdtree, found_by_linear_search);
}
}
#[test]
fn test_non_array_struct() {
// Arrange
let mut features = vec![];
for i in 0..100{
features.push( Features::new(1.*i as f64, 2.*i as f64, 3. * i as f64, 2. * i as f64, 1. * i as f64) );
}
let kd = KdTree::new(&mut features);
// Act
let ref test_feature = Features::new(0., 0., 0., 0., 0.);
let (distance, feature) = kd.nearest_search(test_feature);
// Assert
assert_eq!(test_feature, feature);
}