Reformatted files, changed package name, added description

This commit is contained in:
Olek 2016-12-29 01:44:18 +01:00
parent 4ea61ebfbc
commit 9f03f67c1d
6 changed files with 42 additions and 40 deletions

View File

@ -1,7 +1,8 @@
[package]
name = "kdtree_rust"
name = "fux_kdtree"
version = "0.1.0"
authors = ["Aleksander Fular <ntszar@gmail.com>"]
authors = ["fulara <ntszar@gmail.com>"]
description = "K-dimensional tree implemented in Rust for fast NN querying."
[lib]
name = "kdtree"
@ -12,9 +13,7 @@ bench = false
name = "bench"
harness = false
[dependencies]
rand = "*"
bencher = "*"
[dev-dependencies]
quickcheck = "0.3"
quickcheck = "0.3"
rand = "*"
bencher = "*"

View File

@ -1,18 +1,18 @@
use ::kdtree::*;
pub struct Bounds {
pub bounds: [(f64,f64);3],
pub bounds: [(f64, f64); 3],
widest_dim : usize,
midvalue_of_widest_dim : f64,
widest_dim: usize,
midvalue_of_widest_dim: f64,
}
impl Bounds {
pub fn new_from_points<T: KdtreePointTrait>(points: &[T]) -> Bounds {
let mut bounds = Bounds {
bounds: [(0.,0.),(0.,0.),(0.,0.)],
widest_dim : 0,
midvalue_of_widest_dim : 0.,
bounds: [(0., 0.), (0., 0.), (0., 0.)],
widest_dim: 0,
midvalue_of_widest_dim: 0.,
};
for i in 0..points[0].dims().len() {
@ -64,7 +64,7 @@ impl Bounds {
cloned
}
fn calculate_widest_dim(&mut self) {
fn calculate_widest_dim(&mut self) {
let mut widest_dimension = 0usize;
let mut max_found_spread = self.bounds[0].1 - self.bounds[0].0;

View File

@ -1,8 +1,8 @@
pub fn squared_euclidean(a : &[f64], b: &[f64]) -> f64 {
pub fn squared_euclidean(a: &[f64], b: &[f64]) -> f64 {
debug_assert!(a.len() == b.len());
a.iter().zip(b.iter())
.map(|(x,y)| (x - y) * (x-y))
.map(|(x, y)| (x - y) * (x - y))
.sum()
}
@ -10,29 +10,30 @@ pub fn squared_euclidean(a : &[f64], b: &[f64]) -> f64 {
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn squared_euclidean_test_1d() {
let a = [2.];
let b = [4.];
let c = [-2.];
assert_eq!(0., squared_euclidean(&a,&a));
assert_eq!(0., squared_euclidean(&a, &a));
assert_eq!(4., squared_euclidean(&a,&b));
assert_eq!(4., squared_euclidean(&a, &b));
assert_eq!(16., squared_euclidean(&a,&c));
assert_eq!(16., squared_euclidean(&a, &c));
}
#[test]
fn squared_euclidean_test_2d() {
let a = [2.,2.];
let b = [4.,2.];
let c = [4.,4.];
let a = [2., 2.];
let b = [4., 2.];
let c = [4., 4.];
assert_eq!(0., squared_euclidean(&a,&a));
assert_eq!(0., squared_euclidean(&a, &a));
assert_eq!(4., squared_euclidean(&a,&b));
assert_eq!(4., squared_euclidean(&a, &b));
assert_eq!(8., squared_euclidean(&a,&c));
assert_eq!(8., squared_euclidean(&a, &c));
}
}

View File

@ -9,7 +9,7 @@ mod bounds;
use self::bounds::*;
use self::distance::*;
pub trait KdtreePointTrait {
pub trait KdtreePointTrait: Copy {
fn dims(&self) -> &[f64];
}
@ -17,7 +17,7 @@ pub struct Kdtree<T> {
nodes: Vec<KdtreeNode<T>>,
}
impl<T: KdtreePointTrait + Copy> Kdtree<T> {
impl<T: KdtreePointTrait> Kdtree<T> {
pub fn new(mut points: &mut [T]) -> Kdtree<T> {
if points.len() == 0 {
panic!("empty vector point not allowed");
@ -34,16 +34,16 @@ impl<T: KdtreePointTrait + Copy> Kdtree<T> {
tree
}
pub fn nearest_search(&self, node : &T) -> T
pub fn nearest_search(&self, node: &T) -> T
{
let mut nearest_neighbor = 0usize;
let mut best_distance = squared_euclidean(node.dims(), &self.nodes[0].point.dims());
self.nearest_search_impl(node, 0usize, &mut best_distance , &mut nearest_neighbor);
self.nearest_search_impl(node, 0usize, &mut best_distance, &mut nearest_neighbor);
self.nodes[nearest_neighbor].point
}
fn nearest_search_impl(&self, p : &T, searched_index: usize, best_distance_squared : &mut f64, best_leaf_found : &mut usize) {
fn nearest_search_impl(&self, p: &T, searched_index: usize, best_distance_squared: &mut f64, best_leaf_found: &mut usize) {
let node = &self.nodes[searched_index];
let dimension = node.dimension;
@ -68,7 +68,7 @@ impl<T: KdtreePointTrait + Copy> Kdtree<T> {
}
if let Some(farther_node) = farther_node {
let distance_on_single_dimension = squared_euclidean(&[splitting_value],&[point_splitting_dim_value]);
let distance_on_single_dimension = squared_euclidean(&[splitting_value], &[point_splitting_dim_value]);
if distance_on_single_dimension <= *best_distance_squared {
self.nearest_search_impl(p, farther_node, best_distance_squared, best_leaf_found);
@ -77,8 +77,8 @@ impl<T: KdtreePointTrait + Copy> Kdtree<T> {
}
fn add_node(&mut self, p: T, dimension : usize, split_on : f64) -> usize {
let node = KdtreeNode::new(p, dimension, split_on );
fn add_node(&mut self, p: T, dimension: usize, split_on: f64) -> usize {
let node = KdtreeNode::new(p, dimension, split_on);
self.nodes.push(node);
self.nodes.len() - 1
@ -117,14 +117,14 @@ pub struct KdtreeNode<T> {
}
impl<T: KdtreePointTrait> KdtreeNode<T> {
fn new(p: T, splitting_dimension: usize, split_on_value : f64) -> KdtreeNode<T> {
fn new(p: T, splitting_dimension: usize, split_on_value: f64) -> KdtreeNode<T> {
KdtreeNode {
left_node: None,
right_node: None,
point: p,
dimension : splitting_dimension,
split_on : split_on_value
dimension: splitting_dimension,
split_on: split_on_value
}
}
}
@ -194,11 +194,11 @@ mod tests {
}
}
fn qc_value_vec_to_2d_points_vec(xs : &Vec<f64>) -> Vec<Point2WithId> {
let mut vec : Vec<Point2WithId> = vec![];
for i in 0 .. xs.len() {
fn qc_value_vec_to_2d_points_vec(xs: &Vec<f64>) -> Vec<Point2WithId> {
let mut vec: Vec<Point2WithId> = vec![];
for i in 0..xs.len() {
let mut is_duplicated_value = false;
for j in 0 .. i {
for j in 0..i {
if xs[i] == xs[j] {
is_duplicated_value = true;
break;

View File

@ -1,6 +1,7 @@
#[cfg(test)]
pub mod tests_utils {
use super::super::*;
#[derive(Copy, Clone, PartialEq)]
pub struct Point3WithId {
dims: [f64; 3],

View File

@ -2,6 +2,7 @@
#[macro_use]
extern crate quickcheck;
#[cfg(test)]
extern crate rand;
pub mod kdtree;