mirror of
https://github.com/laanwj/k210-sdk-stuff.git
synced 2024-11-24 02:16:18 +04:00
Merge pull request #8 from Forty-Bot/pll
k210-shared: Rewrite compute_params to use fixed-point
This commit is contained in:
commit
dd801e6ecc
@ -1,6 +1,3 @@
|
||||
use core::convert::TryInto;
|
||||
use libm::F64Ext;
|
||||
|
||||
/** PLL configuration */
|
||||
#[derive(Debug, PartialEq, Eq)]
|
||||
pub struct Params {
|
||||
@ -10,180 +7,563 @@ pub struct Params {
|
||||
pub bwadj: u8,
|
||||
}
|
||||
|
||||
/* constants for PLL frequency computation */
|
||||
const VCO_MIN: f64 = 3.5e+08;
|
||||
const VCO_MAX: f64 = 1.75e+09;
|
||||
const REF_MIN: f64 = 1.36719e+07;
|
||||
const REF_MAX: f64 = 1.75e+09;
|
||||
const NR_MIN: i32 = 1;
|
||||
const NR_MAX: i32 = 16;
|
||||
const NF_MIN: i32 = 1;
|
||||
const NF_MAX: i32 = 64;
|
||||
const NO_MIN: i32 = 1;
|
||||
const NO_MAX: i32 = 16;
|
||||
const NB_MIN: i32 = 1;
|
||||
const NB_MAX: i32 = 64;
|
||||
const MAX_VCO: bool = true;
|
||||
const REF_RNG: bool = true;
|
||||
/*
|
||||
* The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
|
||||
* General-Purpose PLL. The logical layout of the PLL with internal feedback is
|
||||
* approximately the following:
|
||||
*
|
||||
* +---------------+
|
||||
* |reference clock|
|
||||
* +---------------+
|
||||
* |
|
||||
* v
|
||||
* +--+
|
||||
* |/r|
|
||||
* +--+
|
||||
* |
|
||||
* v
|
||||
* +-------------+
|
||||
* |divided clock|
|
||||
* +-------------+
|
||||
* |
|
||||
* v
|
||||
* +--------------+
|
||||
* |phase detector|<---+
|
||||
* +--------------+ |
|
||||
* | |
|
||||
* v +--------------+
|
||||
* +---+ |feedback clock|
|
||||
* |VCO| +--------------+
|
||||
* +---+ ^
|
||||
* | +--+ |
|
||||
* +--->|/f|---+
|
||||
* | +--+
|
||||
* v
|
||||
* +---+
|
||||
* |/od|
|
||||
* +---+
|
||||
* |
|
||||
* v
|
||||
* +------+
|
||||
* |output|
|
||||
* +------+
|
||||
*
|
||||
* The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
|
||||
* the effect of the division by f is to multiply the input frequency. The
|
||||
* equation for the output rate is
|
||||
* rate = (rate_in * f) / (r * od).
|
||||
* Moving knowns to one side of the equation, we get
|
||||
* rate / rate_in = f / (r * od)
|
||||
* Rearranging slightly,
|
||||
* abs_error = abs((rate / rate_in) - (f / (r * od))).
|
||||
* To get relative, error, we divide by the expected ratio
|
||||
* error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
|
||||
* Simplifying,
|
||||
* error = abs(1 - f / (r * od)) / (rate / rate_in)
|
||||
* error = abs(1 - (f * rate_in) / (r * od * rate))
|
||||
* Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
|
||||
* error = abs((f * inv_ratio) / (r * od) - 1)
|
||||
* This is the error used in evaluating parameters.
|
||||
*
|
||||
* r and od are four bits each, while f is six bits. Because r and od are
|
||||
* multiplied together, instead of the full 256 values possible if both bits
|
||||
* were used fully, there are only 97 distinct products. Combined with f, there
|
||||
* are 6208 theoretical settings for the PLL. However, most of these settings
|
||||
* can be ruled out immediately because they do not have the correct ratio.
|
||||
*
|
||||
* In addition to the constraint of approximating the desired ratio, parameters
|
||||
* must also keep internal pll frequencies within acceptable ranges. The divided
|
||||
* clock's minimum and maximum frequencies have a ratio of around 128. This
|
||||
* leaves fairly substantial room to work with, especially since the only
|
||||
* affected parameter is r. The VCO's minimum and maximum frequency have a ratio
|
||||
* of 5, which is considerably more restrictive.
|
||||
*
|
||||
* The r and od factors are stored in a table. This is to make it easy to find
|
||||
* the next-largest product. Some products have multiple factorizations, but
|
||||
* only when one factor has at least a 2.5x ratio to the factors of the other
|
||||
* factorization. This is because any smaller ratio would not make a difference
|
||||
* when ensuring the VCO's frequency is within spec.
|
||||
*
|
||||
* Throughout the calculation function, fixed point arithmetic is used. Because
|
||||
* the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
|
||||
* 32.32 fixed-point numbers are used to represent ratios. In general, to
|
||||
* implement division, the numerator is first multiplied by 2^32. This gives a
|
||||
* result where the whole number part is in the upper 32 bits, and the fraction
|
||||
* is in the lower 32 bits.
|
||||
*
|
||||
* In general, rounding is done to the closest integer. This helps find the best
|
||||
* approximation for the ratio. Rounding in one direction (e.g down) could cause
|
||||
* the function to miss a better ratio with one of the parameters increased by
|
||||
* one.
|
||||
*/
|
||||
|
||||
const VCO_MIN: u64 = 340_000_000;
|
||||
const VCO_MAX: u64 = 1_750_000_000;
|
||||
const DIV_MIN: u32 = 13_300_000;
|
||||
const DIV_MAX: u32 = 1_750_000_000;
|
||||
const R_MIN: u32 = 1;
|
||||
const R_MAX: u32 = 16;
|
||||
const F_MIN: u32 = 1;
|
||||
const F_MAX: u32 = 64;
|
||||
const OD_MIN: u32 = 1;
|
||||
const OD_MAX: u32 = 16;
|
||||
const OUT_MIN: u32 = (VCO_MIN as u32) / OD_MAX; /* 21_250_000 */
|
||||
const OUT_MAX: u32 = (VCO_MAX as u32) / OD_MIN; /* 1_750_000_000 */
|
||||
const IN_MIN: u32 = DIV_MIN * R_MIN; /* 13_300_000 */
|
||||
const IN_MAX: u32 = OUT_MAX; /* 1_750_000_000 */
|
||||
|
||||
/*
|
||||
* Calculate PLL registers' value by finding closest matching parameters
|
||||
* NOTE: this uses floating point math ... this is horrible for something so critical :-(
|
||||
* TODO: implement this without fp ops
|
||||
* The factors table was generated with the following python code:
|
||||
*
|
||||
* def p(x, y):
|
||||
* return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
|
||||
*
|
||||
* factors = {}
|
||||
* for i in range(1, 17):
|
||||
* for j in range(1, 17):
|
||||
* fs = factors.get(i*j) or []
|
||||
* if fs == [] or all([
|
||||
* (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
|
||||
* for (x, y) in fs]):
|
||||
* fs.append((i, j))
|
||||
* factors[i*j] = fs
|
||||
*
|
||||
* for k, l in sorted(factors.items()):
|
||||
* for v in l:
|
||||
* print("pack(%s, %s)," % v)
|
||||
*/
|
||||
struct Factor {
|
||||
packed: u8,
|
||||
}
|
||||
|
||||
/* Apologies, but there are no native bitfields (yet) afaik */
|
||||
const fn pack(r: u32, od: u32) -> Factor {
|
||||
Factor { packed: (((((r as u8) - 1) & 0xF) << 4) | (((od as u8) - 1) & 0xF)) }
|
||||
}
|
||||
|
||||
const fn unpack_r(factor: &&Factor) -> u32 {
|
||||
(((factor.packed as u32) >> 4) & 0xF) + 1
|
||||
}
|
||||
|
||||
const fn unpack_od(factor: &&Factor) -> u32 {
|
||||
((factor.packed as u32) & 0xF) + 1
|
||||
}
|
||||
|
||||
static FACTORS: &'static [Factor] = &[
|
||||
pack(1, 1),
|
||||
pack(1, 2),
|
||||
pack(1, 3),
|
||||
pack(1, 4),
|
||||
pack(1, 5),
|
||||
pack(1, 6),
|
||||
pack(1, 7),
|
||||
pack(1, 8),
|
||||
pack(1, 9),
|
||||
pack(3, 3),
|
||||
pack(1, 10),
|
||||
pack(1, 11),
|
||||
pack(1, 12),
|
||||
pack(3, 4),
|
||||
pack(1, 13),
|
||||
pack(1, 14),
|
||||
pack(1, 15),
|
||||
pack(3, 5),
|
||||
pack(1, 16),
|
||||
pack(4, 4),
|
||||
pack(2, 9),
|
||||
pack(2, 10),
|
||||
pack(3, 7),
|
||||
pack(2, 11),
|
||||
pack(2, 12),
|
||||
pack(5, 5),
|
||||
pack(2, 13),
|
||||
pack(3, 9),
|
||||
pack(2, 14),
|
||||
pack(2, 15),
|
||||
pack(2, 16),
|
||||
pack(3, 11),
|
||||
pack(5, 7),
|
||||
pack(3, 12),
|
||||
pack(3, 13),
|
||||
pack(4, 10),
|
||||
pack(3, 14),
|
||||
pack(4, 11),
|
||||
pack(3, 15),
|
||||
pack(3, 16),
|
||||
pack(7, 7),
|
||||
pack(5, 10),
|
||||
pack(4, 13),
|
||||
pack(6, 9),
|
||||
pack(5, 11),
|
||||
pack(4, 14),
|
||||
pack(4, 15),
|
||||
pack(7, 9),
|
||||
pack(4, 16),
|
||||
pack(5, 13),
|
||||
pack(6, 11),
|
||||
pack(5, 14),
|
||||
pack(6, 12),
|
||||
pack(5, 15),
|
||||
pack(7, 11),
|
||||
pack(6, 13),
|
||||
pack(5, 16),
|
||||
pack(9, 9),
|
||||
pack(6, 14),
|
||||
pack(8, 11),
|
||||
pack(6, 15),
|
||||
pack(7, 13),
|
||||
pack(6, 16),
|
||||
pack(7, 14),
|
||||
pack(9, 11),
|
||||
pack(10, 10),
|
||||
pack(8, 13),
|
||||
pack(7, 15),
|
||||
pack(9, 12),
|
||||
pack(10, 11),
|
||||
pack(7, 16),
|
||||
pack(9, 13),
|
||||
pack(8, 15),
|
||||
pack(11, 11),
|
||||
pack(9, 14),
|
||||
pack(8, 16),
|
||||
pack(10, 13),
|
||||
pack(11, 12),
|
||||
pack(9, 15),
|
||||
pack(10, 14),
|
||||
pack(11, 13),
|
||||
pack(9, 16),
|
||||
pack(10, 15),
|
||||
pack(11, 14),
|
||||
pack(12, 13),
|
||||
pack(10, 16),
|
||||
pack(11, 15),
|
||||
pack(12, 14),
|
||||
pack(13, 13),
|
||||
pack(11, 16),
|
||||
pack(12, 15),
|
||||
pack(13, 14),
|
||||
pack(12, 16),
|
||||
pack(13, 15),
|
||||
pack(14, 14),
|
||||
pack(13, 16),
|
||||
pack(14, 15),
|
||||
pack(14, 16),
|
||||
pack(15, 15),
|
||||
pack(15, 16),
|
||||
pack(16, 16),
|
||||
];
|
||||
|
||||
/* Divide and round to the closest integer */
|
||||
fn div_round_closest(n: u64, d: u32) -> u64 {
|
||||
let _d: u64 = d as u64;
|
||||
|
||||
(n + (_d / 2)) / _d
|
||||
}
|
||||
|
||||
/* Integer with that bit set */
|
||||
fn bit(bit: u8) -> u64 {
|
||||
1 << bit
|
||||
}
|
||||
|
||||
/* | a - b | */
|
||||
fn abs_diff(a: u32, b: u32) -> u32 {
|
||||
if a > b {
|
||||
a - b
|
||||
} else {
|
||||
b - a
|
||||
}
|
||||
}
|
||||
|
||||
pub fn compute_params(freq_in: u32, freq_out: u32) -> Option<Params> {
|
||||
let fin: f64 = freq_in.into();
|
||||
let fout: f64 = freq_out.into();
|
||||
let val: f64 = fout / fin;
|
||||
let terr: f64 = 0.5 / ((NF_MAX / 2) as f64);
|
||||
// NOTE: removed the handling that the Kendryte SDK has for terr<=0.0, as this is impossible
|
||||
// given that NF_MAX is a positive integer constant
|
||||
let mut merr: f64 = terr;
|
||||
let mut x_nrx: i32 = 0;
|
||||
let mut x_no: i32 = 0;
|
||||
let mut best: Option<Params> = None;
|
||||
let mut factors = FACTORS.iter().peekable();
|
||||
let (mut error, mut best_error): (i64, i64);
|
||||
let (ratio, inv_ratio): (u64, u64); /* fixed point 32.32 ratio of the freqs */
|
||||
let max_r: u32;
|
||||
let (mut r, mut f, mut od): (u32, u32, u32);
|
||||
|
||||
// Parameters to be exported from the loop
|
||||
let mut found: Option<Params> = None;
|
||||
for nfi in (val as i32)..NF_MAX {
|
||||
let nr: i32 = ((nfi as f64) / val).round() as i32;
|
||||
if nr == 0 {
|
||||
continue;
|
||||
}
|
||||
if REF_RNG && (nr < NR_MIN) {
|
||||
continue;
|
||||
}
|
||||
if fin / (nr as f64) > REF_MAX {
|
||||
continue;
|
||||
}
|
||||
let mut nrx: i32 = nr;
|
||||
let mut nf: i32 = nfi;
|
||||
let mut nfx: i64 = nfi.into();
|
||||
let nval: f64 = (nfx as f64) / (nr as f64);
|
||||
if nf == 0 {
|
||||
nf = 1;
|
||||
}
|
||||
let err: f64 = 1.0 - nval / val;
|
||||
/*
|
||||
* Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
|
||||
* VCO frequency. These are not the same limits as below because od can
|
||||
* reduce the output frequency by 16.
|
||||
*/
|
||||
if freq_out > OUT_MAX || freq_out < OUT_MIN {
|
||||
return None;
|
||||
}
|
||||
|
||||
if (err.abs() < merr * (1.0 + 1e-6)) || (err.abs() < 1e-16) {
|
||||
let mut not: i32 = (VCO_MAX / fout).floor() as i32;
|
||||
let mut no: i32 = if not > NO_MAX { NO_MAX } else { not };
|
||||
while no > NO_MIN {
|
||||
if (REF_RNG) && ((nr / no) < NR_MIN) {
|
||||
no -= 1;
|
||||
continue;
|
||||
/* Similar restrictions on the input ratio */
|
||||
if freq_in > IN_MAX || freq_in < IN_MIN {
|
||||
return None;
|
||||
}
|
||||
|
||||
ratio = div_round_closest((freq_out as u64) << 32, freq_in);
|
||||
inv_ratio = div_round_closest((freq_in as u64) << 32, freq_out);
|
||||
/* Can't increase by more than 64 or reduce by more than 256 */
|
||||
if freq_out > freq_in && ratio > (64 << 32) {
|
||||
return None;
|
||||
} else if freq_out <= freq_in && inv_ratio > (256 << 32) {
|
||||
return None;
|
||||
}
|
||||
|
||||
/*
|
||||
* The divided clock (freq_in / r) must stay between 1.75 GHz and 13.3
|
||||
* MHz. There is no minimum, since the only way to get a higher input
|
||||
* clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
|
||||
* cannot output frequencies greater than 1.75 GHz, the minimum would
|
||||
* never be greater than one.
|
||||
*/
|
||||
max_r = freq_in / DIV_MIN;
|
||||
|
||||
/* Variables get immediately incremented, so start at -1th iteration */
|
||||
f = 0;
|
||||
r = 0;
|
||||
od = 0;
|
||||
best_error = i64::max_value();
|
||||
error = best_error;
|
||||
/* Always try at least one ratio */
|
||||
'outer: loop {
|
||||
/*
|
||||
* Whether we swapped r and od while enforcing frequency limits
|
||||
*/
|
||||
let mut swapped: bool = false;
|
||||
let last_od: u32 = od;
|
||||
let last_r: u32 = r;
|
||||
|
||||
/*
|
||||
* Try the next largest value for f (or r and od) and
|
||||
* recalculate the other parameters based on that
|
||||
*/
|
||||
if freq_out > freq_in {
|
||||
/*
|
||||
* Skip factors of the same product if we already tried
|
||||
* out that product
|
||||
*/
|
||||
while r * od == last_r * last_od {
|
||||
match factors.next() {
|
||||
Some(factor) => {
|
||||
r = unpack_r(&factor);
|
||||
od = unpack_od(&factor);
|
||||
},
|
||||
None => break 'outer,
|
||||
}
|
||||
if (nr % no) == 0 {
|
||||
}
|
||||
|
||||
/* Round close */
|
||||
f = ((((r * od) as u64) * ratio + bit(31)) >> 32) as u32;
|
||||
if f > F_MAX {
|
||||
f = F_MAX;
|
||||
}
|
||||
} else {
|
||||
f += 1;
|
||||
let tmp: u64 = (f as u64) * inv_ratio;
|
||||
let round_up: bool = tmp & bit(31) != 0;
|
||||
let goal: u32 = ((tmp >> 32) as u32) + (round_up as u32);
|
||||
let (err, last_err): (u32, u32);
|
||||
|
||||
/*
|
||||
* Get the next r/od pair in factors. If the last_* pair is better,
|
||||
* then we will use it instead, so don't call next until after we're
|
||||
* sure we won't need this pair.
|
||||
*/
|
||||
loop {
|
||||
match factors.peek() {
|
||||
Some(factor) => {
|
||||
r = unpack_r(factor);
|
||||
od = unpack_od(factor)
|
||||
},
|
||||
None => break 'outer,
|
||||
}
|
||||
|
||||
if r * od < goal {
|
||||
factors.next();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
no -= 1;
|
||||
}
|
||||
if (nr % no) != 0 {
|
||||
continue;
|
||||
}
|
||||
let mut nor: i32 = (if not > NO_MAX { NO_MAX } else { not }) / no;
|
||||
let mut nore: i32 = NF_MAX / nf;
|
||||
if nor > nore {
|
||||
nor = nore;
|
||||
}
|
||||
let noe: i32 = (VCO_MIN / fout).ceil() as i32;
|
||||
if !MAX_VCO {
|
||||
nore = (noe - 1) / no + 1;
|
||||
nor = nore;
|
||||
not = 0; /* force next if to fail */
|
||||
}
|
||||
if (((no * nor) < (not >> 1)) || ((no * nor) < noe)) && ((no * nor) < (NF_MAX / nf)) {
|
||||
no = NF_MAX / nf;
|
||||
if no > NO_MAX {
|
||||
no = NO_MAX;
|
||||
}
|
||||
if no > not {
|
||||
no = not;
|
||||
}
|
||||
nfx *= no as i64;
|
||||
nf *= no;
|
||||
if (no > 1) && !found.is_none() {
|
||||
continue;
|
||||
}
|
||||
/* wait for larger nf in later iterations */
|
||||
} else {
|
||||
nrx /= no;
|
||||
nfx *= nor as i64;
|
||||
nf *= nor;
|
||||
no *= nor;
|
||||
if no > NO_MAX {
|
||||
continue;
|
||||
}
|
||||
if (nor > 1) && !found.is_none() {
|
||||
continue;
|
||||
}
|
||||
/* wait for larger nf in later iterations */
|
||||
}
|
||||
|
||||
let mut nb: i32 = nfx as i32;
|
||||
if nb < NB_MIN {
|
||||
nb = NB_MIN;
|
||||
}
|
||||
if nb > NB_MAX {
|
||||
continue;
|
||||
/*
|
||||
* This is a case of double rounding. If we rounded up
|
||||
* above, we need to round down (in cases of ties) here.
|
||||
* This prevents off-by-one errors resulting from
|
||||
* choosing X+2 over X when X.Y rounds up to X+1 and
|
||||
* there is no r * od = X+1. For the converse, when X.Y
|
||||
* is rounded down to X, we should choose X+1 over X-1.
|
||||
*/
|
||||
err = abs_diff(r * od, goal);
|
||||
last_err = abs_diff(last_r * last_od, goal);
|
||||
if last_err < err || (round_up && last_err == err) {
|
||||
r = last_r;
|
||||
od = last_od;
|
||||
} else {
|
||||
factors.next();
|
||||
}
|
||||
}
|
||||
|
||||
let fvco: f64 = fin / (nrx as f64) * (nfx as f64);
|
||||
if fvco < VCO_MIN {
|
||||
continue;
|
||||
}
|
||||
if fvco > VCO_MAX {
|
||||
continue;
|
||||
}
|
||||
if nf < NF_MIN {
|
||||
continue;
|
||||
}
|
||||
if REF_RNG && (fin / (nrx as f64) < REF_MIN) {
|
||||
continue;
|
||||
}
|
||||
if REF_RNG && (nrx > NR_MAX) {
|
||||
continue;
|
||||
}
|
||||
if found.is_some() {
|
||||
// check that this reduces error compared to minimum error value, or is an improvement
|
||||
// in no or nrx
|
||||
if !((err.abs() < merr * (1.0 - 1e-6)) || (MAX_VCO && (no > x_no))) {
|
||||
continue;
|
||||
}
|
||||
if nrx > x_nrx {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Enforce limits on internal clock frequencies. If we
|
||||
* aren't in spec, try swapping r and od. If everything is
|
||||
* in-spec, calculate the relative error.
|
||||
*/
|
||||
loop {
|
||||
/*
|
||||
* Whether the intermediate frequencies are out-of-spec
|
||||
*/
|
||||
let mut out_of_spec: bool = false;
|
||||
|
||||
found = Some(Params {
|
||||
clkr: (nrx - 1).try_into().unwrap(),
|
||||
clkf: (nfx - 1).try_into().unwrap(),
|
||||
clkod: (no - 1).try_into().unwrap(),
|
||||
bwadj: (nb - 1).try_into().unwrap(),
|
||||
});
|
||||
merr = err.abs();
|
||||
x_no = no;
|
||||
x_nrx = nrx;
|
||||
if r > max_r {
|
||||
out_of_spec = true;
|
||||
} else {
|
||||
/*
|
||||
* There is no way to only divide once; we need
|
||||
* to examine the frequency with and without the
|
||||
* effect of od.
|
||||
*/
|
||||
let vco: u64 = div_round_closest((freq_in as u64) * (f as u64), r);
|
||||
|
||||
if vco > VCO_MAX || vco < VCO_MIN {
|
||||
out_of_spec = true;
|
||||
}
|
||||
}
|
||||
|
||||
if out_of_spec {
|
||||
if !swapped {
|
||||
let tmp: u32 = r;
|
||||
|
||||
r = od;
|
||||
od = tmp;
|
||||
swapped = true;
|
||||
continue;
|
||||
} else {
|
||||
/*
|
||||
* Try looking ahead to see if there are
|
||||
* additional factors for the same
|
||||
* product.
|
||||
*/
|
||||
match factors.peek() {
|
||||
Some(factor) => {
|
||||
let new_r: u32 = unpack_r(factor);
|
||||
let new_od: u32 = unpack_od(factor);
|
||||
|
||||
if r * od == new_r * new_od {
|
||||
factors.next();
|
||||
r = new_r;
|
||||
od = new_od;
|
||||
swapped = false;
|
||||
continue;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
},
|
||||
None => break 'outer,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
error = div_round_closest((f as u64) * inv_ratio, r * od) as i64;
|
||||
/* The lower 16 bits are spurious */
|
||||
error = i64::abs(error - (bit(32) as i64)) >> 16;
|
||||
|
||||
if error < best_error {
|
||||
best_error = error;
|
||||
best = Some(Params {
|
||||
clkr: (r - 1) as u8,
|
||||
clkf: (f - 1) as u8,
|
||||
clkod: (od - 1) as u8,
|
||||
bwadj: (f - 1) as u8,
|
||||
});
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if error == 0 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if merr >= terr * (1.0 - 1e-6) {
|
||||
None
|
||||
} else {
|
||||
found
|
||||
}
|
||||
|
||||
return best;
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
fn brute_force_params(freq_in: u32, freq_out: u32) -> Option<Params> {
|
||||
let mut best: Option<Params> = None;
|
||||
let (mut error, mut best_error): (i64, i64);
|
||||
let (max_r, inv_ratio): (u32, u64);
|
||||
|
||||
best_error = i64::max_value();
|
||||
max_r = u32::min(R_MAX, (freq_in / DIV_MIN) as u32);
|
||||
inv_ratio = div_round_closest((freq_in as u64) << 32, freq_out);
|
||||
|
||||
/* Brute force it */
|
||||
for r in R_MIN..=max_r {
|
||||
for f in F_MIN..=F_MAX {
|
||||
for od in OD_MIN..=OD_MAX {
|
||||
let vco: u64 = div_round_closest((freq_in as u64) * (f as u64), r);
|
||||
|
||||
if vco > VCO_MAX || vco < VCO_MIN {
|
||||
continue;
|
||||
}
|
||||
|
||||
error = div_round_closest((f as u64) * inv_ratio, r * od) as i64;
|
||||
/* The lower 16 bits are spurious */
|
||||
error = i64::abs(error - (bit(32) as i64)) >> 16;
|
||||
if error < best_error {
|
||||
best_error = error;
|
||||
best = Some(Params {
|
||||
clkr: (r - 1) as u8,
|
||||
clkf: (f - 1) as u8,
|
||||
clkod: (od - 1) as u8,
|
||||
bwadj: (f - 1) as u8,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return best;
|
||||
}
|
||||
|
||||
fn params_equal(_a: Option<Params>, _b: Option<Params>) -> bool {
|
||||
match (_a, _b) {
|
||||
(None, None) => true,
|
||||
(Some(_), None) => false,
|
||||
(None, Some(_)) => false,
|
||||
(Some(a), Some(b)) => {
|
||||
let ar: u32 = (a.clkr + 1) as u32;
|
||||
let af: u32 = (a.clkf + 1) as u32;
|
||||
let aod: u32 = (a.clkod + 1) as u32;
|
||||
let br: u32 = (b.clkr + 1) as u32;
|
||||
let bf: u32 = (b.clkf + 1) as u32;
|
||||
let bod: u32 = (b.clkod + 1) as u32;
|
||||
|
||||
af * br * bod == bf * ar * aod
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn verify_compute_params(freq_in: u32, freq_out: u32) -> bool {
|
||||
params_equal(compute_params(freq_in, freq_out), brute_force_params(freq_in, freq_out))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ompute_params() {
|
||||
/* check against output of C implementation */
|
||||
assert_eq!(compute_params(26_000_000, 1_500_000_000), Some(Params { clkr: 0, clkf: 57, clkod: 0, bwadj: 57 }));
|
||||
assert_eq!(compute_params(26_000_000, 1_000_000_000), Some(Params { clkr: 0, clkf: 37, clkod: 0, bwadj: 37 }));
|
||||
assert_eq!(compute_params(26_000_000, 800_000_000), Some(Params { clkr: 0, clkf: 61, clkod: 1, bwadj: 61 }));
|
||||
assert_eq!(compute_params(26_000_000, 700_000_000), Some(Params { clkr: 0, clkf: 53, clkod: 1, bwadj: 53 }));
|
||||
assert_eq!(compute_params(26_000_000, 300_000_000), Some(Params { clkr: 0, clkf: 45, clkod: 3, bwadj: 45 }));
|
||||
assert_eq!(compute_params(26_000_000, 45_158_400), Some(Params { clkr: 0, clkf: 25, clkod: 14, bwadj: 25 }));
|
||||
fn test_compute_params() {
|
||||
assert_eq!(compute_params(26_000_000, 0), None);
|
||||
assert_eq!(compute_params(0, 390_000_000), None);
|
||||
assert_eq!(compute_params(26_000_000, 2_000_000_000), None);
|
||||
assert_eq!(compute_params(2_000_000_000, 390_000_000), None);
|
||||
assert_eq!(compute_params(20_000_000, 1_500_000_000), None);
|
||||
|
||||
assert!(verify_compute_params(26_000_000, 1_500_000_000));
|
||||
assert!(verify_compute_params(26_000_000, 1_000_000_000));
|
||||
assert!(verify_compute_params(26_000_000, 800_000_000));
|
||||
assert!(verify_compute_params(26_000_000, 700_000_000));
|
||||
assert!(verify_compute_params(26_000_000, 300_000_000));
|
||||
assert!(verify_compute_params(26_000_000, 45_158_400));
|
||||
assert!(verify_compute_params(26_000_000, 27_000_000));
|
||||
assert!(verify_compute_params(27_000_000, 26_000_000));
|
||||
assert!(verify_compute_params(390_000_000, 26_000_000));
|
||||
assert!(verify_compute_params(390_000_000, 383_846_400));
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user