Compare commits

...

5 Commits

Author SHA1 Message Date
Michael Davis
7b47ce32aa
Add TODO.xit 2022-10-30 16:53:53 -05:00
Michael Davis
0557e88eae
LSP: Enable snippet initialization param 2022-10-30 16:41:25 -05:00
Michael Davis
79ac545873
WIP: apply snippets as transactions 2022-10-30 16:39:00 -05:00
Michael Davis
5c4b93b4b4
WIP: parse LSP snippet syntax 2022-10-30 15:54:18 -05:00
Michael Davis
57fde30a09
Add a parser-combinator crate
Parser-combinators are one of the simpler tools for building ad-hoc
parsers. They're a good fit because they are...

* Small: each parser / parser-combinator is around 10 LOC.
* Functional: helix_core strives to be a functional set of utilities
  usable throughout the rest of the editor.
* Flexible: use them to build any sort of ad-hoc parser. In the child
  commit, we'll parse LSP Snippet syntax using these new parser
  combinators.

Why not use an existing parser-combinator crate? Existing popular
parser-combinator crates have histories of making breaking changes
(for example nom and combine).

> Implementation note: I tried to not introduce a new trait since the
> types can be expressed in terms of `impl Fn`s. The trait is necessary
> to build `seq` implementations without a proc macro though, and also
> allows us to use `&'static str`s very conveniently: see the trait
> implementation for `&'static str`.
2022-10-30 15:54:18 -05:00
10 changed files with 1076 additions and 26 deletions

9
Cargo.lock generated
View File

@ -471,8 +471,10 @@ dependencies = [
"futures-executor", "futures-executor",
"futures-util", "futures-util",
"helix-core", "helix-core",
"helix-parsec",
"log", "log",
"lsp-types", "lsp-types",
"once_cell",
"serde", "serde",
"serde_json", "serde_json",
"thiserror", "thiserror",
@ -481,6 +483,13 @@ dependencies = [
"which", "which",
] ]
[[package]]
name = "helix-parsec"
version = "0.6.0"
dependencies = [
"regex",
]
[[package]] [[package]]
name = "helix-term" name = "helix-term"
version = "0.6.0" version = "0.6.0"

View File

@ -7,6 +7,7 @@ members = [
"helix-lsp", "helix-lsp",
"helix-dap", "helix-dap",
"helix-loader", "helix-loader",
"helix-parsec",
"xtask", "xtask",
] ]

9
TODO.xit Normal file
View File

@ -0,0 +1,9 @@
[x] Parse snippet syntax
[x] Generate transaction from snippet
[ ] Store snippet on the Document
[ ] Map snippet ranges through Document changes
[ ] Delete placeholder values on-type in `helix_term::commands::insert::insert`
[ ] Jump between tabstops with Tab and BackTab
[ ] Support variables
[ ] Support variable transforms
[ ] Support choices as completion items

View File

@ -13,6 +13,7 @@ homepage = "https://helix-editor.com"
[dependencies] [dependencies]
helix-core = { version = "0.6", path = "../helix-core" } helix-core = { version = "0.6", path = "../helix-core" }
helix-parsec = { version = "0.6", path = "../helix-parsec" }
anyhow = "1.0" anyhow = "1.0"
futures-executor = "0.3" futures-executor = "0.3"
@ -25,3 +26,4 @@ thiserror = "1.0"
tokio = { version = "1.21", features = ["rt", "rt-multi-thread", "io-util", "io-std", "time", "process", "macros", "fs", "parking_lot", "sync"] } tokio = { version = "1.21", features = ["rt", "rt-multi-thread", "io-util", "io-std", "time", "process", "macros", "fs", "parking_lot", "sync"] }
tokio-stream = "0.1.11" tokio-stream = "0.1.11"
which = "4.2" which = "4.2"
once_cell = "1.15"

View File

@ -303,7 +303,7 @@ pub(crate) async fn initialize(&self) -> Result<lsp::InitializeResult> {
text_document: Some(lsp::TextDocumentClientCapabilities { text_document: Some(lsp::TextDocumentClientCapabilities {
completion: Some(lsp::CompletionClientCapabilities { completion: Some(lsp::CompletionClientCapabilities {
completion_item: Some(lsp::CompletionItemCapability { completion_item: Some(lsp::CompletionItemCapability {
snippet_support: Some(false), snippet_support: Some(true),
resolve_support: Some(lsp::CompletionItemCapabilityResolveSupport { resolve_support: Some(lsp::CompletionItemCapabilityResolveSupport {
properties: vec![ properties: vec![
String::from("documentation"), String::from("documentation"),

View File

@ -1,5 +1,6 @@
mod client; mod client;
pub mod jsonrpc; pub mod jsonrpc;
pub mod snippet;
mod transport; mod transport;
pub use client::Client; pub use client::Client;

440
helix-lsp/src/snippet.rs Normal file
View File

@ -0,0 +1,440 @@
use anyhow::{anyhow, Result};
#[derive(Debug, PartialEq, Eq)]
pub enum CaseChange {
Upcase,
Downcase,
Capitalize,
}
#[derive(Debug, PartialEq, Eq)]
pub enum FormatItem<'a> {
Text(&'a str),
Capture(usize),
CaseChange(usize, CaseChange),
Conditional(usize, Option<&'a str>, Option<&'a str>),
}
#[derive(Debug, PartialEq, Eq)]
pub struct Regex<'a> {
value: &'a str,
replacement: Vec<FormatItem<'a>>,
options: Option<&'a str>,
}
#[derive(Debug, PartialEq, Eq)]
pub enum SnippetElement<'a> {
Tabstop {
tabstop: usize,
},
Placeholder {
tabstop: usize,
value: Box<SnippetElement<'a>>,
},
Choice {
tabstop: usize,
choices: Vec<&'a str>,
},
Variable {
name: &'a str,
default: Option<&'a str>,
regex: Option<Regex<'a>>,
},
Text(&'a str),
}
#[derive(Debug, PartialEq, Eq)]
pub struct Snippet<'a> {
elements: Vec<SnippetElement<'a>>,
}
pub fn parse<'a>(s: &'a str) -> Result<Snippet<'a>> {
parser::parse(s).map_err(|rest| anyhow!("Failed to parse snippet. Remaining input: {}", rest))
}
pub fn into_transaction<'a>(
snippet: Snippet<'a>,
text: &helix_core::Rope,
trigger_offset: usize,
) -> helix_core::Transaction {
use helix_core::{smallvec, Range, Selection, Transaction};
use SnippetElement::*;
let mut insert = String::new();
let mut offset = trigger_offset;
let mut tabstops: Vec<Range> = Vec::new();
for element in snippet.elements {
match element {
Text(text) => {
offset += text.chars().count();
insert.push_str(text)
}
Variable {
name: _name,
regex: None,
r#default,
} => {
// TODO: variables. For now, fall back to the default, which defaults to "".
let text = r#default.unwrap_or_default();
offset += text.chars().count();
insert.push_str(text);
}
Tabstop { .. } => {
// TODO: tabstop indexing: 0 is final cursor position. 1,2,.. are positions.
// TODO: merge tabstops with the same index
tabstops.push(Range::point(offset));
}
Placeholder {
tabstop: _tabstop,
value,
} => match value.as_ref() {
// https://doc.rust-lang.org/beta/unstable-book/language-features/box-patterns.html
// would make this a bit nicer
Text(text) => {
let len_chars = text.chars().count();
tabstops.push(Range::new(offset, offset + len_chars));
offset += len_chars;
insert.push_str(text);
}
other => {
log::error!(
"Discarding snippet: generating a transaction for placeholder contents {:?} is unimplemented.",
other
);
return Transaction::new(text);
}
},
other => {
log::error!(
"Discarding snippet: generating a transaction for {:?} is unimplemented.",
other
);
return Transaction::new(text);
}
}
}
let transaction = Transaction::change(
text,
std::iter::once((trigger_offset, trigger_offset, Some(insert.into()))),
);
if let Some(first) = tabstops.first() {
transaction.with_selection(Selection::new(smallvec![*first], 0))
} else {
transaction
}
}
mod parser {
use helix_core::regex;
use once_cell::sync::Lazy;
use helix_parsec::*;
use super::{CaseChange, FormatItem, Regex, Snippet, SnippetElement};
/*
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/#snippet_syntax
any ::= tabstop | placeholder | choice | variable | text
tabstop ::= '$' int | '${' int '}'
placeholder ::= '${' int ':' any '}'
choice ::= '${' int '|' text (',' text)* '|}'
variable ::= '$' var | '${' var }'
| '${' var ':' any '}'
| '${' var '/' regex '/' (format | text)+ '/' options '}'
format ::= '$' int | '${' int '}'
| '${' int ':' '/upcase' | '/downcase' | '/capitalize' '}'
| '${' int ':+' if '}'
| '${' int ':?' if ':' else '}'
| '${' int ':-' else '}' | '${' int ':' else '}'
regex ::= Regular Expression value (ctor-string)
options ::= Regular Expression option (ctor-options)
var ::= [_a-zA-Z] [_a-zA-Z0-9]*
int ::= [0-9]+
text ::= .*
if ::= text
else ::= text
*/
static DIGIT: Lazy<regex::Regex> = Lazy::new(|| regex::Regex::new(r"^[0-9]+").unwrap());
static VARIABLE: Lazy<regex::Regex> =
Lazy::new(|| regex::Regex::new(r"^[_a-zA-Z][_a-zA-Z0-9]*").unwrap());
static TEXT: Lazy<regex::Regex> = Lazy::new(|| regex::Regex::new(r"^[^\$]+").unwrap());
fn var<'a>() -> impl Parser<'a, Output = &'a str> {
pattern(&VARIABLE)
}
fn digit<'a>() -> impl Parser<'a, Output = usize> {
filter_map(pattern(&DIGIT), |s| s.parse().ok())
}
fn case_change<'a>() -> impl Parser<'a, Output = CaseChange> {
use CaseChange::*;
choice!(
map("upcase", |_| Upcase),
map("downcase", |_| Downcase),
map("capitalize", |_| Capitalize),
)
}
fn format<'a>() -> impl Parser<'a, Output = FormatItem<'a>> {
use FormatItem::*;
choice!(
// '$' int
map(right("$", digit()), Capture),
// '${' int '}'
map(seq!("${", digit(), "}"), |seq| Capture(seq.1)),
// '${' int ':' '/upcase' | '/downcase' | '/capitalize' '}'
map(seq!("${", digit(), ":/", case_change(), "}"), |seq| {
CaseChange(seq.1, seq.3)
}),
// '${' int ':+' if '}'
map(
seq!("${", digit(), ":+", take_until(|c| c == '}'), "}"),
|seq| { Conditional(seq.1, Some(seq.3), None) }
),
// '${' int ':?' if ':' else '}'
map(
seq!(
"${",
digit(),
":?",
take_until(|c| c == ':'),
":",
take_until(|c| c == '}'),
"}"
),
|seq| { Conditional(seq.1, Some(seq.3), Some(seq.5)) }
),
// '${' int ':-' else '}' | '${' int ':' else '}'
map(
seq!(
"${",
digit(),
":",
optional("-"),
take_until(|c| c == '}'),
"}"
),
|seq| { Conditional(seq.1, None, Some(seq.4)) }
),
// Any text
map(pattern(&TEXT), Text),
)
}
fn regex<'a>() -> impl Parser<'a, Output = Regex<'a>> {
let replacement = reparse_as(take_until(|c| c == '/'), one_or_more(format()));
map(
seq!(
"/",
take_until(|c| c == '/'),
"/",
replacement,
"/",
optional(take_until(|c| c == '}')),
),
|(_, value, _, replacement, _, options)| Regex {
value,
replacement,
options,
},
)
}
fn tabstop<'a>() -> impl Parser<'a, Output = SnippetElement<'a>> {
map(
or(
right("$", digit()),
map(seq!("${", digit(), "}"), |values| values.1),
),
|digit| SnippetElement::Tabstop { tabstop: digit },
)
}
fn placeholder<'a>() -> impl Parser<'a, Output = SnippetElement<'a>> {
// TODO: why doesn't parse_as work?
// let value = reparse_as(take_until(|c| c == '}'), anything());
let value = filter_map(take_until(|c| c == '}'), |s| {
anything().parse(s).map(|parse_result| parse_result.1).ok()
});
map(seq!("${", digit(), ":", value, "}"), |seq| {
SnippetElement::Placeholder {
tabstop: seq.1,
value: Box::new(seq.3),
}
})
}
fn choice<'a>() -> impl Parser<'a, Output = SnippetElement<'a>> {
map(
seq!(
"${",
digit(),
"|",
sep(take_until(|c| c == ',' || c == '|'), ","),
"|}",
),
|seq| SnippetElement::Choice {
tabstop: seq.1,
choices: seq.3,
},
)
}
fn variable<'a>() -> impl Parser<'a, Output = SnippetElement<'a>> {
choice!(
// $var
map(right("$", var()), |name| SnippetElement::Variable {
name,
default: None,
regex: None,
}),
// ${var:default}
map(
seq!("${", var(), ":", take_until(|c| c == '}'), "}",),
|values| SnippetElement::Variable {
name: values.1,
default: Some(values.3),
regex: None,
}
),
// ${var/value/format/options}
map(seq!("${", var(), regex(), "}"), |values| {
SnippetElement::Variable {
name: values.1,
default: None,
regex: Some(values.2),
}
}),
)
}
fn text<'a>() -> impl Parser<'a, Output = SnippetElement<'a>> {
map(pattern(&TEXT), SnippetElement::Text)
}
fn anything<'a>() -> impl Parser<'a, Output = SnippetElement<'a>> {
choice!(tabstop(), placeholder(), choice(), variable(), text())
}
fn snippet<'a>() -> impl Parser<'a, Output = Snippet<'a>> {
map(one_or_more(anything()), |parts| Snippet { elements: parts })
}
pub fn parse(s: &str) -> Result<Snippet, &str> {
snippet().parse(s).map(|(_input, elements)| elements)
}
#[cfg(test)]
mod test {
use super::SnippetElement::*;
use super::*;
#[test]
fn empty_string_is_error() {
assert_eq!(Err(""), parse(""));
}
#[test]
fn parse_placeholders_in_function_call() {
assert_eq!(
Ok(Snippet {
elements: vec![
Text("match("),
Placeholder {
tabstop: 1,
value: Box::new(Text("Arg1")),
},
Text(")")
]
}),
parse("match(${1:Arg1})")
)
}
#[test]
fn parse_placeholders_in_statement() {
assert_eq!(
Ok(Snippet {
elements: vec![
Text("local "),
Placeholder {
tabstop: 1,
value: Box::new(Text("var")),
},
Text(" = "),
Placeholder {
tabstop: 1,
value: Box::new(Text("value")),
},
]
}),
parse("local ${1:var} = ${1:value}")
)
}
#[test]
fn parse_all() {
assert_eq!(
Ok(Snippet {
elements: vec![
Text("hello "),
Tabstop { tabstop: 1 },
Tabstop { tabstop: 2 },
Text(" "),
Choice {
tabstop: 1,
choices: vec!["one", "two", "three"]
},
Text(" "),
Variable {
name: "name",
default: Some("foo"),
regex: None
},
Text(" "),
Variable {
name: "var",
default: None,
regex: None
},
Text(" "),
Variable {
name: "TM",
default: None,
regex: None
},
]
}),
parse("hello $1${2} ${1|one,two,three|} ${name:foo} $var $TM")
);
}
#[test]
fn regex_capture_replace() {
assert_eq!(
Ok(Snippet {
elements: vec![Variable {
name: "TM_FILENAME",
default: None,
regex: Some(Regex {
value: "(.*).+$",
replacement: vec![FormatItem::Capture(1)],
options: None,
}),
}]
}),
parse("${TM_FILENAME/(.*).+$/$1/}")
);
}
}
}

14
helix-parsec/Cargo.toml Normal file
View File

@ -0,0 +1,14 @@
[package]
name = "helix-parsec"
version = "0.6.0"
authors = ["Blaž Hrastnik <blaz@mxxn.io>"]
edition = "2021"
license = "MPL-2.0"
description = "Parser combinators for Helix"
categories = ["editor"]
repository = "https://github.com/helix-editor/helix"
homepage = "https://helix-editor.com"
include = ["src/**/*", "README.md"]
[dependencies]
regex = "1"

551
helix-parsec/src/lib.rs Normal file
View File

@ -0,0 +1,551 @@
//! Parser-combinator functions
//!
//! This module provides parsers and parser combinators which can be used
//! together to build parsers by functional composition.
use regex::Regex;
// This module implements parser combinators following https://bodil.lol/parser-combinators/.
// `sym` (trait implementation for `&'static str`), `map`, `pred` (filter), `one_or_more`,
// `zero_or_more`, as well as the `Parser` trait originate mostly from that post.
// The remaining parsers and parser combinators are either based on
// https://github.com/archseer/snippets.nvim/blob/a583da6ef130d2a4888510afd8c4e5ffd62d0dce/lua/snippet/parser.lua#L5-L138
// or are novel.
// When a parser matches the input successfully, it returns `Ok((next_input, some_value))`
// where the type of the returned value depends on the parser. If the parser fails to match,
// it returns `Err(input)`.
type ParseResult<'a, Output> = Result<(&'a str, Output), &'a str>;
/// A parser or parser-combinator.
///
/// Parser-combinators compose multiple parsers together to parse input.
/// For example, two basic parsers (`&'static str`s) may be combined with
/// a parser-combinator like [or] to produce a new parser.
///
/// ```
/// use helix_parsec::{or, Parser};
/// let foo = "foo"; // matches "foo" literally
/// let bar = "bar"; // matches "bar" literally
/// let foo_or_bar = or(foo, bar); // matches either "foo" or "bar"
/// assert_eq!(Ok(("", "foo")), foo_or_bar.parse("foo"));
/// assert_eq!(Ok(("", "bar")), foo_or_bar.parse("bar"));
/// assert_eq!(Err("baz"), foo_or_bar.parse("baz"));
/// ```
pub trait Parser<'a> {
type Output;
fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output>;
}
// Most parser-combinators are written as higher-order functions which take some
// parser(s) as input and return a new parser: a function that takes input and returns
// a parse result. The underlying implementation of [Parser::parse] for these functions
// is simply application.
#[doc(hidden)]
impl<'a, F, T> Parser<'a> for F
where
F: Fn(&'a str) -> ParseResult<T>,
{
type Output = T;
fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output> {
self(input)
}
}
/// A parser which matches the string literal exactly.
///
/// This parser succeeds if the next characters in the input are equal to the given
/// string literal.
///
/// Note that [str::parse] interferes with calling [Parser::parse] on string literals
/// directly; this trait implementation works when used within any parser combinator
/// but does not work on its own. To call [Parser::parse] on a parser for a string
/// literal, use the [token] parser.
///
/// # Examples
///
/// ```
/// use helix_parsec::{or, Parser};
/// let parser = or("foo", "bar");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Ok(("", "bar")), parser.parse("bar"));
/// assert_eq!(Err("baz"), parser.parse("baz"));
/// ```
impl<'a> Parser<'a> for &'static str {
type Output = &'a str;
fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output> {
match input.get(0..self.len()) {
Some(actual) if actual == *self => Ok((&input[self.len()..], &input[0..self.len()])),
_ => Err(input),
}
}
}
// Parsers
/// A parser which matches the given string literally.
///
/// This function is a convenience for interpreting string literals as parsers
/// and is only necessary to avoid conflict with [str::parse]. See the documentation
/// for the `&'static str` implementation of [Parser].
///
/// # Examples
///
/// ```
/// use helix_parsec::{token, Parser};
/// let parser = token("foo");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Err("bar"), parser.parse("bar"));
/// ```
pub fn token<'a>(literal: &'static str) -> impl Parser<'a, Output = &'a str> {
literal
}
/// A parser which matches the pattern described by the given regular expression.
///
/// The pattern must match from the beginning of the input as if the regular expression
/// included the `^` anchor. Using a `^` anchor in the regular expression is
/// recommended in order to reduce any work done by the regex on non-matching input.
///
/// # Examples
///
/// ```
/// use helix_parsec::{pattern, Parser};
/// use regex::Regex;
/// let regex = Regex::new(r"Hello, \w+!").unwrap();
/// let parser = pattern(&regex);
/// assert_eq!(Ok(("", "Hello, world!")), parser.parse("Hello, world!"));
/// assert_eq!(Err("Hey, you!"), parser.parse("Hey, you!"));
/// assert_eq!(Err("Oh Hello, world!"), parser.parse("Oh Hello, world!"));
/// ```
pub fn pattern<'a>(regex: &'a Regex) -> impl Parser<'a, Output = &'a str> {
move |input: &'a str| match regex.find(input) {
Some(match_) if match_.start() == 0 => {
Ok((&input[match_.end()..], &input[0..match_.end()]))
}
_ => Err(input),
}
}
/// A parser which matches all values until the specified pattern is found.
///
/// If the pattern is not found, this parser does not match. The input up to the
/// character which returns `true` is returned but not that character itself.
///
/// If the pattern function returns true on the first input character, this
/// parser fails.
///
/// # Examples
///
/// ```
/// use helix_parsec::{take_until, Parser};
/// let parser = take_until(|c| c == '.');
/// assert_eq!(Ok((".bar", "foo")), parser.parse("foo.bar"));
/// assert_eq!(Err(".foo"), parser.parse(".foo"));
/// assert_eq!(Err("foo"), parser.parse("foo"));
/// ```
pub fn take_until<'a, F>(pattern: F) -> impl Parser<'a, Output = &'a str>
where
F: Fn(char) -> bool,
{
move |input: &'a str| match input.find(&pattern) {
Some(index) if index != 0 => Ok((&input[index..], &input[0..index])),
_ => Err(input),
}
}
// Variadic parser combinators
/// A parser combinator which matches a sequence of parsers in an all-or-nothing fashion.
///
/// The returned value is a tuple containing the outputs of all parsers in order. Each
/// parser in the sequence may be typed differently.
///
/// # Examples
///
/// ```
/// use helix_parsec::{seq, Parser};
/// let parser = seq!("<", "a", ">");
/// assert_eq!(Ok(("", ("<", "a", ">"))), parser.parse("<a>"));
/// assert_eq!(Err("<b>"), parser.parse("<b>"));
/// ```
#[macro_export]
macro_rules! seq {
($($parsers: expr),+ $(,)?) => {
($($parsers),+)
}
}
// Seq is implemented using trait-implementations of Parser for various size tuples.
// This allows sequences to be typed heterogeneously.
macro_rules! seq_impl {
($($parser:ident),+) => {
#[allow(non_snake_case)]
impl<'a, $($parser),+> Parser<'a> for ($($parser),+)
where
$($parser: Parser<'a>),+
{
type Output = ($($parser::Output),+);
fn parse(&self, input: &'a str) -> ParseResult<'a, Self::Output> {
let ($($parser),+) = self;
seq_body_impl!(input, input, $($parser),+ ; )
}
}
}
}
macro_rules! seq_body_impl {
($input:expr, $next_input:expr, $head:ident, $($tail:ident),+ ; $(,)? $($acc:ident),*) => {
match $head.parse($next_input) {
Ok((next_input, $head)) => seq_body_impl!($input, next_input, $($tail),+ ; $($acc),*, $head),
Err(_) => Err($input),
}
};
($input:expr, $next_input:expr, $last:ident ; $(,)? $($acc:ident),*) => {
match $last.parse($next_input) {
Ok((next_input, last)) => Ok((next_input, ($($acc),+, last))),
Err(_) => Err($input),
}
}
}
seq_impl!(A, B);
seq_impl!(A, B, C);
seq_impl!(A, B, C, D);
seq_impl!(A, B, C, D, E);
seq_impl!(A, B, C, D, E, F);
seq_impl!(A, B, C, D, E, F, G);
seq_impl!(A, B, C, D, E, F, G, H);
seq_impl!(A, B, C, D, E, F, G, H, I);
seq_impl!(A, B, C, D, E, F, G, H, I, J);
/// A parser combinator which chooses the first of the input parsers which matches
/// successfully.
///
/// All input parsers must have the same output type. This is a variadic form for [or].
///
/// # Examples
///
/// ```
/// use helix_parsec::{choice, or, Parser};
/// let parser = choice!("foo", "bar", "baz");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Ok(("", "bar")), parser.parse("bar"));
/// assert_eq!(Err("quiz"), parser.parse("quiz"));
/// ```
#[macro_export]
macro_rules! choice {
($parser: expr $(,)?) => {
$parser
};
($parser: expr, $($rest: expr),+ $(,)?) => {
or($parser, choice!($($rest),+))
}
}
// Ordinary parser combinators
/// A parser combinator which takes a parser as input and maps the output using the
/// given transformation function.
///
/// This corresponds to [Result::map]. The value is only mapped if the input parser
/// matches against input.
///
/// # Examples
///
/// ```
/// use helix_parsec::{map, Parser};
/// let parser = map("123", |s| s.parse::<i32>().unwrap());
/// assert_eq!(Ok(("", 123)), parser.parse("123"));
/// assert_eq!(Err("abc"), parser.parse("abc"));
/// ```
pub fn map<'a, P, F, T>(parser: P, map_fn: F) -> impl Parser<'a, Output = T>
where
P: Parser<'a>,
F: Fn(P::Output) -> T,
{
move |input| {
parser
.parse(input)
.map(|(next_input, result)| (next_input, map_fn(result)))
}
}
/// A parser combinator which succeeds if the given parser matches the input and
/// the given `filter_map_fun` returns `Some`.
///
/// # Examples
///
/// ```
/// use helix_parsec::{filter_map, take_until, Parser};
/// let parser = filter_map(take_until(|c| c == '.'), |s| s.parse::<i32>().ok());
/// assert_eq!(Ok((".456", 123)), parser.parse("123.456"));
/// assert_eq!(Err("abc.def"), parser.parse("abc.def"));
/// ```
pub fn filter_map<'a, P, F, T>(parser: P, filter_map_fn: F) -> impl Parser<'a, Output = T>
where
P: Parser<'a>,
F: Fn(P::Output) -> Option<T>,
{
move |input| match parser.parse(input) {
Ok((next_input, value)) => match filter_map_fn(value) {
Some(value) => Ok((next_input, value)),
None => Err(input),
},
Err(_) => Err(input),
}
}
/// TODO: name
pub fn reparse_as<'a, P1, P2, T>(parser1: P1, parser2: P2) -> impl Parser<'a, Output = T>
where
P1: Parser<'a, Output = &'a str>,
P2: Parser<'a, Output = T>,
{
filter_map(parser1, move |str| {
parser2.parse(str).map(|(_, value)| value).ok()
})
}
/// A parser combinator which only matches the input when the predicate function
/// returns true.
///
/// # Examples
///
/// ```
/// use helix_parsec::{filter, take_until, Parser};
/// let parser = filter(take_until(|c| c == '.'), |s| s == &"123");
/// assert_eq!(Ok((".456", "123")), parser.parse("123.456"));
/// assert_eq!(Err("456.123"), parser.parse("456.123"));
/// ```
pub fn filter<'a, P, F, T>(parser: P, pred_fn: F) -> impl Parser<'a, Output = T>
where
P: Parser<'a, Output = T>,
F: Fn(&P::Output) -> bool,
{
move |input| {
if let Ok((next_input, value)) = parser.parse(input) {
if pred_fn(&value) {
return Ok((next_input, value));
}
}
Err(input)
}
}
/// A parser combinator which matches either of the input parsers.
///
/// Both parsers must have the same output type. For a variadic form which
/// can take any number of parsers, use `choice!`.
///
/// # Examples
///
/// ```
/// use helix_parsec::{or, Parser};
/// let parser = or("foo", "bar");
/// assert_eq!(Ok(("", "foo")), parser.parse("foo"));
/// assert_eq!(Ok(("", "bar")), parser.parse("bar"));
/// assert_eq!(Err("baz"), parser.parse("baz"));
/// ```
pub fn or<'a, P1, P2, T>(parser1: P1, parser2: P2) -> impl Parser<'a, Output = T>
where
P1: Parser<'a, Output = T>,
P2: Parser<'a, Output = T>,
{
move |input| match parser1.parse(input) {
ok @ Ok(_) => ok,
Err(_) => parser2.parse(input),
}
}
/// A parser combinator which attempts to match the given parser, returning a
/// `None` output value if the parser does not match.
///
/// The parser produced with this combinator always succeeds. If the given parser
/// succeeds, `Some(value)` is returned where `value` is the output of the given
/// parser. Otherwise, `None`.
///
/// # Examples
///
/// ```
/// use helix_parsec::{optional, Parser};
/// let parser = optional("foo");
/// assert_eq!(Ok(("bar", Some("foo"))), parser.parse("foobar"));
/// assert_eq!(Ok(("bar", None)), parser.parse("bar"));
/// ```
pub fn optional<'a, P, T>(parser: P) -> impl Parser<'a, Output = Option<T>>
where
P: Parser<'a, Output = T>,
{
move |input| match parser.parse(input) {
Ok((next_input, value)) => Ok((next_input, Some(value))),
Err(_) => Ok((input, None)),
}
}
/// A parser combinator which runs the given parsers in sequence and returns the
/// value of `left` if both are matched.
///
/// This is useful for two-element sequences in which you only want the output
/// value of the `left` parser.
///
/// # Examples
///
/// ```
/// use helix_parsec::{left, Parser};
/// let parser = left("foo", "bar");
/// assert_eq!(Ok(("", "foo")), parser.parse("foobar"));
/// ```
pub fn left<'a, L, R, T>(left: L, right: R) -> impl Parser<'a, Output = T>
where
L: Parser<'a, Output = T>,
R: Parser<'a>,
{
map(seq!(left, right), |(left_value, _)| left_value)
}
/// A parser combinator which runs the given parsers in sequence and returns the
/// value of `right` if both are matched.
///
/// This is useful for two-element sequences in which you only want the output
/// value of the `right` parser.
///
/// # Examples
///
/// ```
/// use helix_parsec::{right, Parser};
/// let parser = right("foo", "bar");
/// assert_eq!(Ok(("", "bar")), parser.parse("foobar"));
/// ```
pub fn right<'a, L, R, T>(left: L, right: R) -> impl Parser<'a, Output = T>
where
L: Parser<'a>,
R: Parser<'a, Output = T>,
{
map(seq!(left, right), |(_, right_value)| right_value)
}
/// A parser combinator which matches the given parser against the input zero or
/// more times.
///
/// This parser always succeeds and returns the empty Vec when it matched zero
/// times.
///
/// # Examples
///
/// ```
/// use helix_parsec::{zero_or_more, Parser};
/// let parser = zero_or_more("a");
/// assert_eq!(Ok(("", vec![])), parser.parse(""));
/// assert_eq!(Ok(("", vec!["a"])), parser.parse("a"));
/// assert_eq!(Ok(("", vec!["a", "a"])), parser.parse("aa"));
/// assert_eq!(Ok(("bb", vec![])), parser.parse("bb"));
/// ```
pub fn zero_or_more<'a, P, T>(parser: P) -> impl Parser<'a, Output = Vec<T>>
where
P: Parser<'a, Output = T>,
{
move |mut input| {
let mut values = Vec::new();
while let Ok((next_input, value)) = parser.parse(input) {
input = next_input;
values.push(value);
}
Ok((input, values))
}
}
/// A parser combinator which matches the given parser against the input one or
/// more times.
///
/// This parser combinator acts the same as [zero_or_more] but must match at
/// least once.
///
/// # Examples
///
/// ```
/// use helix_parsec::{one_or_more, Parser};
/// let parser = one_or_more("a");
/// assert_eq!(Err(""), parser.parse(""));
/// assert_eq!(Ok(("", vec!["a"])), parser.parse("a"));
/// assert_eq!(Ok(("", vec!["a", "a"])), parser.parse("aa"));
/// assert_eq!(Err("bb"), parser.parse("bb"));
/// ```
pub fn one_or_more<'a, P, T>(parser: P) -> impl Parser<'a, Output = Vec<T>>
where
P: Parser<'a, Output = T>,
{
move |mut input| {
let mut values = Vec::new();
match parser.parse(input) {
Ok((next_input, value)) => {
input = next_input;
values.push(value);
}
Err(err) => return Err(err),
}
while let Ok((next_input, value)) = parser.parse(input) {
input = next_input;
values.push(value);
}
Ok((input, values))
}
}
/// A parser combinator which matches one or more instances of the given parser
/// interspersed with the separator parser.
///
/// Output values of the separator parser are discarded.
///
/// This is typically used to parse function arguments or list items.
///
/// # Examples
///
/// ```rust
/// use helix_parsec::{sep, Parser};
/// let parser = sep("a", ",");
/// assert_eq!(Ok(("", vec!["a", "a", "a"])), parser.parse("a,a,a"));
/// ```
pub fn sep<'a, P, S, T>(parser: P, separator: S) -> impl Parser<'a, Output = Vec<T>>
where
P: Parser<'a, Output = T>,
S: Parser<'a>,
{
move |mut input| {
let mut values = Vec::new();
match parser.parse(input) {
Ok((next_input, value)) => {
input = next_input;
values.push(value);
}
Err(err) => return Err(err),
}
loop {
match separator.parse(input) {
Ok((next_input, _)) => input = next_input,
Err(_) => break,
}
match parser.parse(input) {
Ok((next_input, value)) => {
input = next_input;
values.push(value);
}
Err(_) => break,
}
}
Ok((input, values))
}
}

View File

@ -109,32 +109,55 @@ fn item_to_transaction(
start_offset: usize, start_offset: usize,
trigger_offset: usize, trigger_offset: usize,
) -> Transaction { ) -> Transaction {
let transaction = if let Some(edit) = &item.text_edit { use helix_lsp::snippet;
let edit = match edit {
lsp::CompletionTextEdit::Edit(edit) => edit.clone(), match item {
lsp::CompletionTextEdit::InsertAndReplace(item) => { CompletionItem {
unimplemented!("completion: insert_and_replace {:?}", item) text_edit: Some(edit),
..
} => {
let edit = match edit {
lsp::CompletionTextEdit::Edit(edit) => edit.clone(),
lsp::CompletionTextEdit::InsertAndReplace(item) => {
unimplemented!("completion: insert_and_replace {:?}", item)
}
};
util::generate_transaction_from_edits(
doc.text(),
vec![edit],
offset_encoding, // TODO: should probably transcode in Client
)
}
CompletionItem {
insert_text: Some(insert_text),
insert_text_format: Some(lsp::InsertTextFormat::SNIPPET),
..
} => match snippet::parse(insert_text) {
Ok(snippet) => {
snippet::into_transaction(snippet, doc.text(), trigger_offset)
} }
}; Err(err) => {
log::error!(
util::generate_transaction_from_edits( "Failed to parse snippet: {:?}, remaining output: {}",
doc.text(), insert_text,
vec![edit], err
offset_encoding, // TODO: should probably transcode in Client );
) Transaction::new(doc.text())
} else { }
let text = item.insert_text.as_ref().unwrap_or(&item.label); },
// Some LSPs just give you an insertText with no offset ¯\_(ツ)_/¯ _ => {
// in these cases we need to check for a common prefix and remove it let text = item.insert_text.as_ref().unwrap_or(&item.label);
let prefix = Cow::from(doc.text().slice(start_offset..trigger_offset)); // Some LSPs just give you an insertText with no offset ¯\_(ツ)_/¯
let text = text.trim_start_matches::<&str>(&prefix); // in these cases we need to check for a common prefix and remove it
Transaction::change( let prefix = Cow::from(doc.text().slice(start_offset..trigger_offset));
doc.text(), let text = text.trim_start_matches::<&str>(&prefix);
vec![(trigger_offset, trigger_offset, Some(text.into()))].into_iter(), Transaction::change(
) doc.text(),
}; vec![(trigger_offset, trigger_offset, Some(text.into()))].into_iter(),
)
transaction }
}
} }
fn completion_changes(transaction: &Transaction, trigger_offset: usize) -> Vec<Change> { fn completion_changes(transaction: &Transaction, trigger_offset: usize) -> Vec<Change> {