mirror of
https://github.com/helix-editor/helix.git
synced 2024-11-23 01:46:18 +04:00
da2afe7353
These come from Kakoune: * '#' is the selection index register. It's read-only and produces the selection index numbers, 1-indexed. * '.' is the selection contents register. It is also read-only and mirrors the contents of the current selections when read. We switch the iterators returned from Selection's `fragments` and `slices` methods to ExactSizeIterators because: * The selection contents register can simply return the fragments iterator. * ExactSizeIterator is already implemented for iterators over Vecs, so it's essentially free. * The `len` method can be useful on its own.
1288 lines
42 KiB
Rust
1288 lines
42 KiB
Rust
//! Selections are the primary editing construct. Even cursors are
|
|
//! defined as a selection range.
|
|
//!
|
|
//! All positioning is done via `char` offsets into the buffer.
|
|
use crate::{
|
|
graphemes::{
|
|
ensure_grapheme_boundary_next, ensure_grapheme_boundary_prev, next_grapheme_boundary,
|
|
prev_grapheme_boundary,
|
|
},
|
|
movement::Direction,
|
|
Assoc, ChangeSet, RopeGraphemes, RopeSlice,
|
|
};
|
|
use smallvec::{smallvec, SmallVec};
|
|
use std::borrow::Cow;
|
|
|
|
/// A single selection range.
|
|
///
|
|
/// A range consists of an "anchor" and "head" position in
|
|
/// the text. The head is the part that the user moves when
|
|
/// directly extending a selection. The head and anchor
|
|
/// can be in any order, or even share the same position.
|
|
///
|
|
/// The anchor and head positions use gap indexing, meaning
|
|
/// that their indices represent the gaps *between* `char`s
|
|
/// rather than the `char`s themselves. For example, 1
|
|
/// represents the position between the first and second `char`.
|
|
///
|
|
/// Below are some examples of `Range` configurations.
|
|
/// The anchor and head indices are shown as "(anchor, head)"
|
|
/// tuples, followed by example text with "[" and "]" symbols
|
|
/// representing the anchor and head positions:
|
|
///
|
|
/// - (0, 3): `[Som]e text`.
|
|
/// - (3, 0): `]Som[e text`.
|
|
/// - (2, 7): `So[me te]xt`.
|
|
/// - (1, 1): `S[]ome text`.
|
|
///
|
|
/// Ranges are considered to be inclusive on the left and
|
|
/// exclusive on the right, regardless of anchor-head ordering.
|
|
/// This means, for example, that non-zero-width ranges that
|
|
/// are directly adjacent, sharing an edge, do not overlap.
|
|
/// However, a zero-width range will overlap with the shared
|
|
/// left-edge of another range.
|
|
///
|
|
/// By convention, user-facing ranges are considered to have
|
|
/// a block cursor on the head-side of the range that spans a
|
|
/// single grapheme inward from the range's edge. There are a
|
|
/// variety of helper methods on `Range` for working in terms of
|
|
/// that block cursor, all of which have `cursor` in their name.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
|
pub struct Range {
|
|
/// The anchor of the range: the side that doesn't move when extending.
|
|
pub anchor: usize,
|
|
/// The head of the range, moved when extending.
|
|
pub head: usize,
|
|
/// The previous visual offset (softwrapped lines and columns) from
|
|
/// the start of the line
|
|
pub old_visual_position: Option<(u32, u32)>,
|
|
}
|
|
|
|
impl Range {
|
|
pub fn new(anchor: usize, head: usize) -> Self {
|
|
Self {
|
|
anchor,
|
|
head,
|
|
old_visual_position: None,
|
|
}
|
|
}
|
|
|
|
pub fn point(head: usize) -> Self {
|
|
Self::new(head, head)
|
|
}
|
|
|
|
/// Start of the range.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from(&self) -> usize {
|
|
std::cmp::min(self.anchor, self.head)
|
|
}
|
|
|
|
/// End of the range.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn to(&self) -> usize {
|
|
std::cmp::max(self.anchor, self.head)
|
|
}
|
|
|
|
/// Total length of the range.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn len(&self) -> usize {
|
|
self.to() - self.from()
|
|
}
|
|
|
|
/// The (inclusive) range of lines that the range overlaps.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn line_range(&self, text: RopeSlice) -> (usize, usize) {
|
|
let from = self.from();
|
|
let to = if self.is_empty() {
|
|
self.to()
|
|
} else {
|
|
prev_grapheme_boundary(text, self.to()).max(from)
|
|
};
|
|
|
|
(text.char_to_line(from), text.char_to_line(to))
|
|
}
|
|
|
|
/// `true` when head and anchor are at the same position.
|
|
#[inline]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.anchor == self.head
|
|
}
|
|
|
|
/// `Direction::Backward` when head < anchor.
|
|
/// `Direction::Backward` otherwise.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn direction(&self) -> Direction {
|
|
if self.head < self.anchor {
|
|
Direction::Backward
|
|
} else {
|
|
Direction::Forward
|
|
}
|
|
}
|
|
|
|
/// Flips the direction of the selection
|
|
pub fn flip(&self) -> Self {
|
|
Self {
|
|
anchor: self.head,
|
|
head: self.anchor,
|
|
old_visual_position: self.old_visual_position,
|
|
}
|
|
}
|
|
|
|
/// Returns the selection if it goes in the direction of `direction`,
|
|
/// flipping the selection otherwise.
|
|
pub fn with_direction(self, direction: Direction) -> Self {
|
|
if self.direction() == direction {
|
|
self
|
|
} else {
|
|
self.flip()
|
|
}
|
|
}
|
|
|
|
/// Check two ranges for overlap.
|
|
#[must_use]
|
|
pub fn overlaps(&self, other: &Self) -> bool {
|
|
// To my eye, it's non-obvious why this works, but I arrived
|
|
// at it after transforming the slower version that explicitly
|
|
// enumerated more cases. The unit tests are thorough.
|
|
self.from() == other.from() || (self.to() > other.from() && other.to() > self.from())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn contains_range(&self, other: &Self) -> bool {
|
|
self.from() <= other.from() && self.to() >= other.to()
|
|
}
|
|
|
|
pub fn contains(&self, pos: usize) -> bool {
|
|
self.from() <= pos && pos < self.to()
|
|
}
|
|
|
|
/// Map a range through a set of changes. Returns a new range representing
|
|
/// the same position after the changes are applied. Note that this
|
|
/// function runs in O(N) (N is number of changes) and can therefore
|
|
/// cause performance problems if run for a large number of ranges as the
|
|
/// complexity is then O(MN) (for multicuror M=N usually). Instead use
|
|
/// [Selection::map] or [ChangeSet::update_positions] instead
|
|
pub fn map(mut self, changes: &ChangeSet) -> Self {
|
|
use std::cmp::Ordering;
|
|
if changes.is_empty() {
|
|
return self;
|
|
}
|
|
|
|
let positions_to_map = match self.anchor.cmp(&self.head) {
|
|
Ordering::Equal => [
|
|
(&mut self.anchor, Assoc::After),
|
|
(&mut self.head, Assoc::After),
|
|
],
|
|
Ordering::Less => [
|
|
(&mut self.anchor, Assoc::After),
|
|
(&mut self.head, Assoc::Before),
|
|
],
|
|
Ordering::Greater => [
|
|
(&mut self.head, Assoc::After),
|
|
(&mut self.anchor, Assoc::Before),
|
|
],
|
|
};
|
|
changes.update_positions(positions_to_map.into_iter());
|
|
self.old_visual_position = None;
|
|
self
|
|
}
|
|
|
|
/// Extend the range to cover at least `from` `to`.
|
|
#[must_use]
|
|
pub fn extend(&self, from: usize, to: usize) -> Self {
|
|
debug_assert!(from <= to);
|
|
|
|
if self.anchor <= self.head {
|
|
Self {
|
|
anchor: self.anchor.min(from),
|
|
head: self.head.max(to),
|
|
old_visual_position: None,
|
|
}
|
|
} else {
|
|
Self {
|
|
anchor: self.anchor.max(to),
|
|
head: self.head.min(from),
|
|
old_visual_position: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns a range that encompasses both input ranges.
|
|
///
|
|
/// This is like `extend()`, but tries to negotiate the
|
|
/// anchor/head ordering between the two input ranges.
|
|
#[must_use]
|
|
pub fn merge(&self, other: Self) -> Self {
|
|
if self.anchor > self.head && other.anchor > other.head {
|
|
Range {
|
|
anchor: self.anchor.max(other.anchor),
|
|
head: self.head.min(other.head),
|
|
old_visual_position: None,
|
|
}
|
|
} else {
|
|
Range {
|
|
anchor: self.from().min(other.from()),
|
|
head: self.to().max(other.to()),
|
|
old_visual_position: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
// groupAt
|
|
|
|
/// Returns the text inside this range given the text of the whole buffer.
|
|
///
|
|
/// The returned `Cow` is a reference if the range of text is inside a single
|
|
/// chunk of the rope. Otherwise a copy of the text is returned. Consider
|
|
/// using `slice` instead if you do not need a `Cow` or `String` to avoid copying.
|
|
#[inline]
|
|
pub fn fragment<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> Cow<'b, str> {
|
|
self.slice(text).into()
|
|
}
|
|
|
|
/// Returns the text inside this range given the text of the whole buffer.
|
|
///
|
|
/// The returned value is a reference to the passed slice. This method never
|
|
/// copies any contents.
|
|
#[inline]
|
|
pub fn slice<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> RopeSlice<'b> {
|
|
text.slice(self.from()..self.to())
|
|
}
|
|
|
|
//--------------------------------
|
|
// Alignment methods.
|
|
|
|
/// Compute a possibly new range from this range, with its ends
|
|
/// shifted as needed to align with grapheme boundaries.
|
|
///
|
|
/// Zero-width ranges will always stay zero-width, and non-zero-width
|
|
/// ranges will never collapse to zero-width.
|
|
#[must_use]
|
|
pub fn grapheme_aligned(&self, slice: RopeSlice) -> Self {
|
|
use std::cmp::Ordering;
|
|
let (new_anchor, new_head) = match self.anchor.cmp(&self.head) {
|
|
Ordering::Equal => {
|
|
let pos = ensure_grapheme_boundary_prev(slice, self.anchor);
|
|
(pos, pos)
|
|
}
|
|
Ordering::Less => (
|
|
ensure_grapheme_boundary_prev(slice, self.anchor),
|
|
ensure_grapheme_boundary_next(slice, self.head),
|
|
),
|
|
Ordering::Greater => (
|
|
ensure_grapheme_boundary_next(slice, self.anchor),
|
|
ensure_grapheme_boundary_prev(slice, self.head),
|
|
),
|
|
};
|
|
Range {
|
|
anchor: new_anchor,
|
|
head: new_head,
|
|
old_visual_position: if new_anchor == self.anchor {
|
|
self.old_visual_position
|
|
} else {
|
|
None
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Compute a possibly new range from this range, attempting to ensure
|
|
/// a minimum range width of 1 char by shifting the head in the forward
|
|
/// direction as needed.
|
|
///
|
|
/// This method will never shift the anchor, and will only shift the
|
|
/// head in the forward direction. Therefore, this method can fail
|
|
/// at ensuring the minimum width if and only if the passed range is
|
|
/// both zero-width and at the end of the `RopeSlice`.
|
|
///
|
|
/// If the input range is grapheme-boundary aligned, the returned range
|
|
/// will also be. Specifically, if the head needs to shift to achieve
|
|
/// the minimum width, it will shift to the next grapheme boundary.
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn min_width_1(&self, slice: RopeSlice) -> Self {
|
|
if self.anchor == self.head {
|
|
Range {
|
|
anchor: self.anchor,
|
|
head: next_grapheme_boundary(slice, self.head),
|
|
old_visual_position: self.old_visual_position,
|
|
}
|
|
} else {
|
|
*self
|
|
}
|
|
}
|
|
|
|
//--------------------------------
|
|
// Block-cursor methods.
|
|
|
|
/// Gets the left-side position of the block cursor.
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn cursor(self, text: RopeSlice) -> usize {
|
|
if self.head > self.anchor {
|
|
prev_grapheme_boundary(text, self.head)
|
|
} else {
|
|
self.head
|
|
}
|
|
}
|
|
|
|
/// Puts the left side of the block cursor at `char_idx`, optionally extending.
|
|
///
|
|
/// This follows "1-width" semantics, and therefore does a combination of anchor
|
|
/// and head moves to behave as if both the front and back of the range are 1-width
|
|
/// blocks
|
|
///
|
|
/// This method assumes that the range and `char_idx` are already properly
|
|
/// grapheme-aligned.
|
|
#[must_use]
|
|
#[inline]
|
|
pub fn put_cursor(self, text: RopeSlice, char_idx: usize, extend: bool) -> Range {
|
|
if extend {
|
|
let anchor = if self.head >= self.anchor && char_idx < self.anchor {
|
|
next_grapheme_boundary(text, self.anchor)
|
|
} else if self.head < self.anchor && char_idx >= self.anchor {
|
|
prev_grapheme_boundary(text, self.anchor)
|
|
} else {
|
|
self.anchor
|
|
};
|
|
|
|
if anchor <= char_idx {
|
|
Range::new(anchor, next_grapheme_boundary(text, char_idx))
|
|
} else {
|
|
Range::new(anchor, char_idx)
|
|
}
|
|
} else {
|
|
Range::point(char_idx)
|
|
}
|
|
}
|
|
|
|
/// The line number that the block-cursor is on.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn cursor_line(&self, text: RopeSlice) -> usize {
|
|
text.char_to_line(self.cursor(text))
|
|
}
|
|
|
|
/// Returns true if this Range covers a single grapheme in the given text
|
|
pub fn is_single_grapheme(&self, doc: RopeSlice) -> bool {
|
|
let mut graphemes = RopeGraphemes::new(doc.slice(self.from()..self.to()));
|
|
let first = graphemes.next();
|
|
let second = graphemes.next();
|
|
first.is_some() && second.is_none()
|
|
}
|
|
}
|
|
|
|
impl From<(usize, usize)> for Range {
|
|
fn from((anchor, head): (usize, usize)) -> Self {
|
|
Self {
|
|
anchor,
|
|
head,
|
|
old_visual_position: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A selection consists of one or more selection ranges.
|
|
/// invariant: A selection can never be empty (always contains at least primary range).
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
pub struct Selection {
|
|
ranges: SmallVec<[Range; 1]>,
|
|
primary_index: usize,
|
|
}
|
|
|
|
#[allow(clippy::len_without_is_empty)] // a Selection is never empty
|
|
impl Selection {
|
|
// eq
|
|
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn primary(&self) -> Range {
|
|
self.ranges[self.primary_index]
|
|
}
|
|
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn primary_mut(&mut self) -> &mut Range {
|
|
&mut self.ranges[self.primary_index]
|
|
}
|
|
|
|
/// Ensure selection containing only the primary selection.
|
|
pub fn into_single(self) -> Self {
|
|
if self.ranges.len() == 1 {
|
|
self
|
|
} else {
|
|
Self {
|
|
ranges: smallvec![self.ranges[self.primary_index]],
|
|
primary_index: 0,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Adds a new range to the selection and makes it the primary range.
|
|
pub fn push(mut self, range: Range) -> Self {
|
|
self.ranges.push(range);
|
|
self.set_primary_index(self.ranges().len() - 1);
|
|
self.normalize()
|
|
}
|
|
|
|
/// Removes a range from the selection.
|
|
pub fn remove(mut self, index: usize) -> Self {
|
|
assert!(
|
|
self.ranges.len() > 1,
|
|
"can't remove the last range from a selection!"
|
|
);
|
|
|
|
self.ranges.remove(index);
|
|
if index < self.primary_index || self.primary_index == self.ranges.len() {
|
|
self.primary_index -= 1;
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Replace a range in the selection with a new range.
|
|
pub fn replace(mut self, index: usize, range: Range) -> Self {
|
|
self.ranges[index] = range;
|
|
self.normalize()
|
|
}
|
|
|
|
/// Map selections over a set of changes. Useful for adjusting the selection position after
|
|
/// applying changes to a document.
|
|
pub fn map(self, changes: &ChangeSet) -> Self {
|
|
self.map_no_normalize(changes).normalize()
|
|
}
|
|
|
|
/// Map selections over a set of changes. Useful for adjusting the selection position after
|
|
/// applying changes to a document. Doesn't normalize the selection
|
|
pub fn map_no_normalize(mut self, changes: &ChangeSet) -> Self {
|
|
if changes.is_empty() {
|
|
return self;
|
|
}
|
|
|
|
let positions_to_map = self.ranges.iter_mut().flat_map(|range| {
|
|
use std::cmp::Ordering;
|
|
range.old_visual_position = None;
|
|
match range.anchor.cmp(&range.head) {
|
|
Ordering::Equal => [
|
|
(&mut range.anchor, Assoc::After),
|
|
(&mut range.head, Assoc::After),
|
|
],
|
|
Ordering::Less => [
|
|
(&mut range.anchor, Assoc::After),
|
|
(&mut range.head, Assoc::Before),
|
|
],
|
|
Ordering::Greater => [
|
|
(&mut range.head, Assoc::After),
|
|
(&mut range.anchor, Assoc::Before),
|
|
],
|
|
}
|
|
});
|
|
changes.update_positions(positions_to_map);
|
|
self
|
|
}
|
|
|
|
pub fn ranges(&self) -> &[Range] {
|
|
&self.ranges
|
|
}
|
|
|
|
pub fn primary_index(&self) -> usize {
|
|
self.primary_index
|
|
}
|
|
|
|
pub fn set_primary_index(&mut self, idx: usize) {
|
|
assert!(idx < self.ranges.len());
|
|
self.primary_index = idx;
|
|
}
|
|
|
|
#[must_use]
|
|
/// Constructs a selection holding a single range.
|
|
pub fn single(anchor: usize, head: usize) -> Self {
|
|
Self {
|
|
ranges: smallvec![Range {
|
|
anchor,
|
|
head,
|
|
old_visual_position: None
|
|
}],
|
|
primary_index: 0,
|
|
}
|
|
}
|
|
|
|
/// Constructs a selection holding a single cursor.
|
|
pub fn point(pos: usize) -> Self {
|
|
Self::single(pos, pos)
|
|
}
|
|
|
|
/// Normalizes a `Selection`.
|
|
fn normalize(mut self) -> Self {
|
|
if self.len() < 2 {
|
|
return self;
|
|
}
|
|
let mut primary = self.ranges[self.primary_index];
|
|
self.ranges.sort_unstable_by_key(Range::from);
|
|
|
|
self.ranges.dedup_by(|curr_range, prev_range| {
|
|
if prev_range.overlaps(curr_range) {
|
|
let new_range = curr_range.merge(*prev_range);
|
|
if prev_range == &primary || curr_range == &primary {
|
|
primary = new_range;
|
|
}
|
|
*prev_range = new_range;
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
});
|
|
|
|
self.primary_index = self
|
|
.ranges
|
|
.iter()
|
|
.position(|&range| range == primary)
|
|
.unwrap();
|
|
|
|
self
|
|
}
|
|
|
|
/// Replaces ranges with one spanning from first to last range.
|
|
pub fn merge_ranges(self) -> Self {
|
|
let first = self.ranges.first().unwrap();
|
|
let last = self.ranges.last().unwrap();
|
|
Selection::new(smallvec![first.merge(*last)], 0)
|
|
}
|
|
|
|
/// Merges all ranges that are consecutive.
|
|
pub fn merge_consecutive_ranges(mut self) -> Self {
|
|
let mut primary = self.ranges[self.primary_index];
|
|
|
|
self.ranges.dedup_by(|curr_range, prev_range| {
|
|
if prev_range.to() == curr_range.from() {
|
|
let new_range = curr_range.merge(*prev_range);
|
|
if prev_range == &primary || curr_range == &primary {
|
|
primary = new_range;
|
|
}
|
|
*prev_range = new_range;
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
});
|
|
|
|
self.primary_index = self
|
|
.ranges
|
|
.iter()
|
|
.position(|&range| range == primary)
|
|
.unwrap();
|
|
|
|
self
|
|
}
|
|
|
|
// TODO: consume an iterator or a vec to reduce allocations?
|
|
#[must_use]
|
|
pub fn new(ranges: SmallVec<[Range; 1]>, primary_index: usize) -> Self {
|
|
assert!(!ranges.is_empty());
|
|
debug_assert!(primary_index < ranges.len());
|
|
|
|
let selection = Self {
|
|
ranges,
|
|
primary_index,
|
|
};
|
|
|
|
selection.normalize()
|
|
}
|
|
|
|
/// Takes a closure and maps each `Range` over the closure.
|
|
pub fn transform<F>(mut self, mut f: F) -> Self
|
|
where
|
|
F: FnMut(Range) -> Range,
|
|
{
|
|
for range in self.ranges.iter_mut() {
|
|
*range = f(*range)
|
|
}
|
|
self.normalize()
|
|
}
|
|
|
|
/// Takes a closure and maps each `Range` over the closure to multiple `Range`s.
|
|
pub fn transform_iter<F, I>(mut self, f: F) -> Self
|
|
where
|
|
F: FnMut(Range) -> I,
|
|
I: Iterator<Item = Range>,
|
|
{
|
|
self.ranges = self.ranges.into_iter().flat_map(f).collect();
|
|
self.normalize()
|
|
}
|
|
|
|
// Ensures the selection adheres to the following invariants:
|
|
// 1. All ranges are grapheme aligned.
|
|
// 2. All ranges are at least 1 character wide, unless at the
|
|
// very end of the document.
|
|
// 3. Ranges are non-overlapping.
|
|
// 4. Ranges are sorted by their position in the text.
|
|
pub fn ensure_invariants(self, text: RopeSlice) -> Self {
|
|
self.transform(|r| r.min_width_1(text).grapheme_aligned(text))
|
|
.normalize()
|
|
}
|
|
|
|
/// Transforms the selection into all of the left-side head positions,
|
|
/// using block-cursor semantics.
|
|
pub fn cursors(self, text: RopeSlice) -> Self {
|
|
self.transform(|range| Range::point(range.cursor(text)))
|
|
}
|
|
|
|
pub fn fragments<'a>(
|
|
&'a self,
|
|
text: RopeSlice<'a>,
|
|
) -> impl DoubleEndedIterator<Item = Cow<'a, str>> + ExactSizeIterator<Item = Cow<str>> + 'a
|
|
{
|
|
self.ranges.iter().map(move |range| range.fragment(text))
|
|
}
|
|
|
|
pub fn slices<'a>(
|
|
&'a self,
|
|
text: RopeSlice<'a>,
|
|
) -> impl DoubleEndedIterator<Item = RopeSlice<'a>> + ExactSizeIterator<Item = RopeSlice<'a>> + 'a
|
|
{
|
|
self.ranges.iter().map(move |range| range.slice(text))
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn iter(&self) -> std::slice::Iter<'_, Range> {
|
|
self.ranges.iter()
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn len(&self) -> usize {
|
|
self.ranges.len()
|
|
}
|
|
|
|
// returns true if self ⊇ other
|
|
pub fn contains(&self, other: &Selection) -> bool {
|
|
let (mut iter_self, mut iter_other) = (self.iter(), other.iter());
|
|
let (mut ele_self, mut ele_other) = (iter_self.next(), iter_other.next());
|
|
|
|
loop {
|
|
match (ele_self, ele_other) {
|
|
(Some(ra), Some(rb)) => {
|
|
if !ra.contains_range(rb) {
|
|
// `self` doesn't contain next element from `other`, advance `self`, we need to match all from `other`
|
|
ele_self = iter_self.next();
|
|
} else {
|
|
// matched element from `other`, advance `other`
|
|
ele_other = iter_other.next();
|
|
};
|
|
}
|
|
(None, Some(_)) => {
|
|
// exhausted `self`, we can't match the reminder of `other`
|
|
return false;
|
|
}
|
|
(_, None) => {
|
|
// no elements from `other` left to match, `self` contains `other`
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a> IntoIterator for &'a Selection {
|
|
type Item = &'a Range;
|
|
type IntoIter = std::slice::Iter<'a, Range>;
|
|
|
|
fn into_iter(self) -> std::slice::Iter<'a, Range> {
|
|
self.ranges().iter()
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for Selection {
|
|
type Item = Range;
|
|
type IntoIter = smallvec::IntoIter<[Range; 1]>;
|
|
|
|
fn into_iter(self) -> smallvec::IntoIter<[Range; 1]> {
|
|
self.ranges.into_iter()
|
|
}
|
|
}
|
|
|
|
// TODO: checkSelection -> check if valid for doc length && sorted
|
|
|
|
pub fn keep_or_remove_matches(
|
|
text: RopeSlice,
|
|
selection: &Selection,
|
|
regex: &crate::regex::Regex,
|
|
remove: bool,
|
|
) -> Option<Selection> {
|
|
let result: SmallVec<_> = selection
|
|
.iter()
|
|
.filter(|range| regex.is_match(&range.fragment(text)) ^ remove)
|
|
.copied()
|
|
.collect();
|
|
|
|
// TODO: figure out a new primary index
|
|
if !result.is_empty() {
|
|
return Some(Selection::new(result, 0));
|
|
}
|
|
None
|
|
}
|
|
|
|
pub fn select_on_matches(
|
|
text: RopeSlice,
|
|
selection: &Selection,
|
|
regex: &crate::regex::Regex,
|
|
) -> Option<Selection> {
|
|
let mut result = SmallVec::with_capacity(selection.len());
|
|
|
|
for sel in selection {
|
|
// TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
|
|
let fragment = sel.fragment(text);
|
|
|
|
let sel_start = sel.from();
|
|
let start_byte = text.char_to_byte(sel_start);
|
|
|
|
for mat in regex.find_iter(&fragment) {
|
|
// TODO: retain range direction
|
|
|
|
let start = text.byte_to_char(start_byte + mat.start());
|
|
let end = text.byte_to_char(start_byte + mat.end());
|
|
|
|
let range = Range::new(start, end);
|
|
// Make sure the match is not right outside of the selection.
|
|
// These invalid matches can come from using RegEx anchors like `^`, `$`
|
|
if range != Range::point(sel.to()) {
|
|
result.push(range);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: figure out a new primary index
|
|
if !result.is_empty() {
|
|
return Some(Selection::new(result, 0));
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
// TODO: support to split on capture #N instead of whole match
|
|
pub fn split_on_matches(
|
|
text: RopeSlice,
|
|
selection: &Selection,
|
|
regex: &crate::regex::Regex,
|
|
) -> Selection {
|
|
let mut result = SmallVec::with_capacity(selection.len());
|
|
|
|
for sel in selection {
|
|
// Special case: zero-width selection.
|
|
if sel.from() == sel.to() {
|
|
result.push(*sel);
|
|
continue;
|
|
}
|
|
|
|
// TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
|
|
let fragment = sel.fragment(text);
|
|
|
|
let sel_start = sel.from();
|
|
let sel_end = sel.to();
|
|
|
|
let start_byte = text.char_to_byte(sel_start);
|
|
|
|
let mut start = sel_start;
|
|
|
|
for mat in regex.find_iter(&fragment) {
|
|
// TODO: retain range direction
|
|
let end = text.byte_to_char(start_byte + mat.start());
|
|
result.push(Range::new(start, end));
|
|
start = text.byte_to_char(start_byte + mat.end());
|
|
}
|
|
|
|
if start < sel_end {
|
|
result.push(Range::new(start, sel_end));
|
|
}
|
|
}
|
|
|
|
// TODO: figure out a new primary index
|
|
Selection::new(result, 0)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use crate::Rope;
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_new_empty() {
|
|
let _ = Selection::new(smallvec![], 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_create_normalizes_and_merges() {
|
|
let sel = Selection::new(
|
|
smallvec![
|
|
Range::new(10, 12),
|
|
Range::new(6, 7),
|
|
Range::new(4, 5),
|
|
Range::new(3, 4),
|
|
Range::new(0, 6),
|
|
Range::new(7, 8),
|
|
Range::new(9, 13),
|
|
Range::new(13, 14),
|
|
],
|
|
0,
|
|
);
|
|
|
|
let res = sel
|
|
.ranges
|
|
.into_iter()
|
|
.map(|range| format!("{}/{}", range.anchor, range.head))
|
|
.collect::<Vec<String>>()
|
|
.join(",");
|
|
|
|
assert_eq!(res, "0/6,6/7,7/8,9/13,13/14");
|
|
|
|
// it correctly calculates a new primary index
|
|
let sel = Selection::new(
|
|
smallvec![Range::new(0, 2), Range::new(1, 5), Range::new(4, 7)],
|
|
2,
|
|
);
|
|
|
|
let res = sel
|
|
.ranges
|
|
.into_iter()
|
|
.map(|range| format!("{}/{}", range.anchor, range.head))
|
|
.collect::<Vec<String>>()
|
|
.join(",");
|
|
|
|
assert_eq!(res, "0/7");
|
|
assert_eq!(sel.primary_index, 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_create_merges_adjacent_points() {
|
|
let sel = Selection::new(
|
|
smallvec![
|
|
Range::new(10, 12),
|
|
Range::new(12, 12),
|
|
Range::new(12, 12),
|
|
Range::new(10, 10),
|
|
Range::new(8, 10),
|
|
],
|
|
0,
|
|
);
|
|
|
|
let res = sel
|
|
.ranges
|
|
.into_iter()
|
|
.map(|range| format!("{}/{}", range.anchor, range.head))
|
|
.collect::<Vec<String>>()
|
|
.join(",");
|
|
|
|
assert_eq!(res, "8/10,10/12,12/12");
|
|
}
|
|
|
|
#[test]
|
|
fn test_contains() {
|
|
let range = Range::new(10, 12);
|
|
|
|
assert!(!range.contains(9));
|
|
assert!(range.contains(10));
|
|
assert!(range.contains(11));
|
|
assert!(!range.contains(12));
|
|
assert!(!range.contains(13));
|
|
|
|
let range = Range::new(9, 6);
|
|
assert!(!range.contains(9));
|
|
assert!(range.contains(7));
|
|
assert!(range.contains(6));
|
|
}
|
|
|
|
#[test]
|
|
fn test_overlaps() {
|
|
fn overlaps(a: (usize, usize), b: (usize, usize)) -> bool {
|
|
Range::new(a.0, a.1).overlaps(&Range::new(b.0, b.1))
|
|
}
|
|
|
|
// Two non-zero-width ranges, no overlap.
|
|
assert!(!overlaps((0, 3), (3, 6)));
|
|
assert!(!overlaps((0, 3), (6, 3)));
|
|
assert!(!overlaps((3, 0), (3, 6)));
|
|
assert!(!overlaps((3, 0), (6, 3)));
|
|
assert!(!overlaps((3, 6), (0, 3)));
|
|
assert!(!overlaps((3, 6), (3, 0)));
|
|
assert!(!overlaps((6, 3), (0, 3)));
|
|
assert!(!overlaps((6, 3), (3, 0)));
|
|
|
|
// Two non-zero-width ranges, overlap.
|
|
assert!(overlaps((0, 4), (3, 6)));
|
|
assert!(overlaps((0, 4), (6, 3)));
|
|
assert!(overlaps((4, 0), (3, 6)));
|
|
assert!(overlaps((4, 0), (6, 3)));
|
|
assert!(overlaps((3, 6), (0, 4)));
|
|
assert!(overlaps((3, 6), (4, 0)));
|
|
assert!(overlaps((6, 3), (0, 4)));
|
|
assert!(overlaps((6, 3), (4, 0)));
|
|
|
|
// Zero-width and non-zero-width range, no overlap.
|
|
assert!(!overlaps((0, 3), (3, 3)));
|
|
assert!(!overlaps((3, 0), (3, 3)));
|
|
assert!(!overlaps((3, 3), (0, 3)));
|
|
assert!(!overlaps((3, 3), (3, 0)));
|
|
|
|
// Zero-width and non-zero-width range, overlap.
|
|
assert!(overlaps((1, 4), (1, 1)));
|
|
assert!(overlaps((4, 1), (1, 1)));
|
|
assert!(overlaps((1, 1), (1, 4)));
|
|
assert!(overlaps((1, 1), (4, 1)));
|
|
|
|
assert!(overlaps((1, 4), (3, 3)));
|
|
assert!(overlaps((4, 1), (3, 3)));
|
|
assert!(overlaps((3, 3), (1, 4)));
|
|
assert!(overlaps((3, 3), (4, 1)));
|
|
|
|
// Two zero-width ranges, no overlap.
|
|
assert!(!overlaps((0, 0), (1, 1)));
|
|
assert!(!overlaps((1, 1), (0, 0)));
|
|
|
|
// Two zero-width ranges, overlap.
|
|
assert!(overlaps((1, 1), (1, 1)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_grapheme_aligned() {
|
|
let r = Rope::from_str("\r\nHi\r\n");
|
|
let s = r.slice(..);
|
|
|
|
// Zero-width.
|
|
assert_eq!(Range::new(0, 0).grapheme_aligned(s), Range::new(0, 0));
|
|
assert_eq!(Range::new(1, 1).grapheme_aligned(s), Range::new(0, 0));
|
|
assert_eq!(Range::new(2, 2).grapheme_aligned(s), Range::new(2, 2));
|
|
assert_eq!(Range::new(3, 3).grapheme_aligned(s), Range::new(3, 3));
|
|
assert_eq!(Range::new(4, 4).grapheme_aligned(s), Range::new(4, 4));
|
|
assert_eq!(Range::new(5, 5).grapheme_aligned(s), Range::new(4, 4));
|
|
assert_eq!(Range::new(6, 6).grapheme_aligned(s), Range::new(6, 6));
|
|
|
|
// Forward.
|
|
assert_eq!(Range::new(0, 1).grapheme_aligned(s), Range::new(0, 2));
|
|
assert_eq!(Range::new(1, 2).grapheme_aligned(s), Range::new(0, 2));
|
|
assert_eq!(Range::new(2, 3).grapheme_aligned(s), Range::new(2, 3));
|
|
assert_eq!(Range::new(3, 4).grapheme_aligned(s), Range::new(3, 4));
|
|
assert_eq!(Range::new(4, 5).grapheme_aligned(s), Range::new(4, 6));
|
|
assert_eq!(Range::new(5, 6).grapheme_aligned(s), Range::new(4, 6));
|
|
|
|
assert_eq!(Range::new(0, 2).grapheme_aligned(s), Range::new(0, 2));
|
|
assert_eq!(Range::new(1, 3).grapheme_aligned(s), Range::new(0, 3));
|
|
assert_eq!(Range::new(2, 4).grapheme_aligned(s), Range::new(2, 4));
|
|
assert_eq!(Range::new(3, 5).grapheme_aligned(s), Range::new(3, 6));
|
|
assert_eq!(Range::new(4, 6).grapheme_aligned(s), Range::new(4, 6));
|
|
|
|
// Reverse.
|
|
assert_eq!(Range::new(1, 0).grapheme_aligned(s), Range::new(2, 0));
|
|
assert_eq!(Range::new(2, 1).grapheme_aligned(s), Range::new(2, 0));
|
|
assert_eq!(Range::new(3, 2).grapheme_aligned(s), Range::new(3, 2));
|
|
assert_eq!(Range::new(4, 3).grapheme_aligned(s), Range::new(4, 3));
|
|
assert_eq!(Range::new(5, 4).grapheme_aligned(s), Range::new(6, 4));
|
|
assert_eq!(Range::new(6, 5).grapheme_aligned(s), Range::new(6, 4));
|
|
|
|
assert_eq!(Range::new(2, 0).grapheme_aligned(s), Range::new(2, 0));
|
|
assert_eq!(Range::new(3, 1).grapheme_aligned(s), Range::new(3, 0));
|
|
assert_eq!(Range::new(4, 2).grapheme_aligned(s), Range::new(4, 2));
|
|
assert_eq!(Range::new(5, 3).grapheme_aligned(s), Range::new(6, 3));
|
|
assert_eq!(Range::new(6, 4).grapheme_aligned(s), Range::new(6, 4));
|
|
}
|
|
|
|
#[test]
|
|
fn test_min_width_1() {
|
|
let r = Rope::from_str("\r\nHi\r\n");
|
|
let s = r.slice(..);
|
|
|
|
// Zero-width.
|
|
assert_eq!(Range::new(0, 0).min_width_1(s), Range::new(0, 2));
|
|
assert_eq!(Range::new(1, 1).min_width_1(s), Range::new(1, 2));
|
|
assert_eq!(Range::new(2, 2).min_width_1(s), Range::new(2, 3));
|
|
assert_eq!(Range::new(3, 3).min_width_1(s), Range::new(3, 4));
|
|
assert_eq!(Range::new(4, 4).min_width_1(s), Range::new(4, 6));
|
|
assert_eq!(Range::new(5, 5).min_width_1(s), Range::new(5, 6));
|
|
assert_eq!(Range::new(6, 6).min_width_1(s), Range::new(6, 6));
|
|
|
|
// Forward.
|
|
assert_eq!(Range::new(0, 1).min_width_1(s), Range::new(0, 1));
|
|
assert_eq!(Range::new(1, 2).min_width_1(s), Range::new(1, 2));
|
|
assert_eq!(Range::new(2, 3).min_width_1(s), Range::new(2, 3));
|
|
assert_eq!(Range::new(3, 4).min_width_1(s), Range::new(3, 4));
|
|
assert_eq!(Range::new(4, 5).min_width_1(s), Range::new(4, 5));
|
|
assert_eq!(Range::new(5, 6).min_width_1(s), Range::new(5, 6));
|
|
|
|
// Reverse.
|
|
assert_eq!(Range::new(1, 0).min_width_1(s), Range::new(1, 0));
|
|
assert_eq!(Range::new(2, 1).min_width_1(s), Range::new(2, 1));
|
|
assert_eq!(Range::new(3, 2).min_width_1(s), Range::new(3, 2));
|
|
assert_eq!(Range::new(4, 3).min_width_1(s), Range::new(4, 3));
|
|
assert_eq!(Range::new(5, 4).min_width_1(s), Range::new(5, 4));
|
|
assert_eq!(Range::new(6, 5).min_width_1(s), Range::new(6, 5));
|
|
}
|
|
|
|
#[test]
|
|
fn test_select_on_matches() {
|
|
use crate::regex::{Regex, RegexBuilder};
|
|
|
|
let r = Rope::from_str("Nobody expects the Spanish inquisition");
|
|
let s = r.slice(..);
|
|
|
|
let selection = Selection::single(0, r.len_chars());
|
|
assert_eq!(
|
|
select_on_matches(s, &selection, &Regex::new(r"[A-Z][a-z]*").unwrap()),
|
|
Some(Selection::new(
|
|
smallvec![Range::new(0, 6), Range::new(19, 26)],
|
|
0
|
|
))
|
|
);
|
|
|
|
let r = Rope::from_str("This\nString\n\ncontains multiple\nlines");
|
|
let s = r.slice(..);
|
|
|
|
let start_of_line = RegexBuilder::new(r"^").multi_line(true).build().unwrap();
|
|
let end_of_line = RegexBuilder::new(r"$").multi_line(true).build().unwrap();
|
|
|
|
// line without ending
|
|
assert_eq!(
|
|
select_on_matches(s, &Selection::single(0, 4), &start_of_line),
|
|
Some(Selection::single(0, 0))
|
|
);
|
|
assert_eq!(
|
|
select_on_matches(s, &Selection::single(0, 4), &end_of_line),
|
|
None
|
|
);
|
|
// line with ending
|
|
assert_eq!(
|
|
select_on_matches(s, &Selection::single(0, 5), &start_of_line),
|
|
Some(Selection::single(0, 0))
|
|
);
|
|
assert_eq!(
|
|
select_on_matches(s, &Selection::single(0, 5), &end_of_line),
|
|
Some(Selection::single(4, 4))
|
|
);
|
|
// line with start of next line
|
|
assert_eq!(
|
|
select_on_matches(s, &Selection::single(0, 6), &start_of_line),
|
|
Some(Selection::new(
|
|
smallvec![Range::point(0), Range::point(5)],
|
|
0
|
|
))
|
|
);
|
|
assert_eq!(
|
|
select_on_matches(s, &Selection::single(0, 6), &end_of_line),
|
|
Some(Selection::single(4, 4))
|
|
);
|
|
|
|
// multiple lines
|
|
assert_eq!(
|
|
select_on_matches(
|
|
s,
|
|
&Selection::single(0, s.len_chars()),
|
|
&RegexBuilder::new(r"^[a-z ]*$")
|
|
.multi_line(true)
|
|
.build()
|
|
.unwrap()
|
|
),
|
|
Some(Selection::new(
|
|
smallvec![Range::point(12), Range::new(13, 30), Range::new(31, 36)],
|
|
0
|
|
))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_line_range() {
|
|
let r = Rope::from_str("\r\nHi\r\nthere!");
|
|
let s = r.slice(..);
|
|
|
|
// Zero-width ranges.
|
|
assert_eq!(Range::new(0, 0).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(1, 1).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(2, 2).line_range(s), (1, 1));
|
|
assert_eq!(Range::new(3, 3).line_range(s), (1, 1));
|
|
|
|
// Forward ranges.
|
|
assert_eq!(Range::new(0, 1).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(0, 2).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(0, 3).line_range(s), (0, 1));
|
|
assert_eq!(Range::new(1, 2).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(2, 3).line_range(s), (1, 1));
|
|
assert_eq!(Range::new(3, 8).line_range(s), (1, 2));
|
|
assert_eq!(Range::new(0, 12).line_range(s), (0, 2));
|
|
|
|
// Reverse ranges.
|
|
assert_eq!(Range::new(1, 0).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(2, 0).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(3, 0).line_range(s), (0, 1));
|
|
assert_eq!(Range::new(2, 1).line_range(s), (0, 0));
|
|
assert_eq!(Range::new(3, 2).line_range(s), (1, 1));
|
|
assert_eq!(Range::new(8, 3).line_range(s), (1, 2));
|
|
assert_eq!(Range::new(12, 0).line_range(s), (0, 2));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cursor() {
|
|
let r = Rope::from_str("\r\nHi\r\nthere!");
|
|
let s = r.slice(..);
|
|
|
|
// Zero-width ranges.
|
|
assert_eq!(Range::new(0, 0).cursor(s), 0);
|
|
assert_eq!(Range::new(2, 2).cursor(s), 2);
|
|
assert_eq!(Range::new(3, 3).cursor(s), 3);
|
|
|
|
// Forward ranges.
|
|
assert_eq!(Range::new(0, 2).cursor(s), 0);
|
|
assert_eq!(Range::new(0, 3).cursor(s), 2);
|
|
assert_eq!(Range::new(3, 6).cursor(s), 4);
|
|
|
|
// Reverse ranges.
|
|
assert_eq!(Range::new(2, 0).cursor(s), 0);
|
|
assert_eq!(Range::new(6, 2).cursor(s), 2);
|
|
assert_eq!(Range::new(6, 3).cursor(s), 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_put_cursor() {
|
|
let r = Rope::from_str("\r\nHi\r\nthere!");
|
|
let s = r.slice(..);
|
|
|
|
// Zero-width ranges.
|
|
assert_eq!(Range::new(0, 0).put_cursor(s, 0, true), Range::new(0, 2));
|
|
assert_eq!(Range::new(0, 0).put_cursor(s, 2, true), Range::new(0, 3));
|
|
assert_eq!(Range::new(2, 3).put_cursor(s, 4, true), Range::new(2, 6));
|
|
assert_eq!(Range::new(2, 8).put_cursor(s, 4, true), Range::new(2, 6));
|
|
assert_eq!(Range::new(8, 8).put_cursor(s, 4, true), Range::new(9, 4));
|
|
|
|
// Forward ranges.
|
|
assert_eq!(Range::new(3, 6).put_cursor(s, 0, true), Range::new(4, 0));
|
|
assert_eq!(Range::new(3, 6).put_cursor(s, 2, true), Range::new(4, 2));
|
|
assert_eq!(Range::new(3, 6).put_cursor(s, 3, true), Range::new(3, 4));
|
|
assert_eq!(Range::new(3, 6).put_cursor(s, 4, true), Range::new(3, 6));
|
|
assert_eq!(Range::new(3, 6).put_cursor(s, 6, true), Range::new(3, 7));
|
|
assert_eq!(Range::new(3, 6).put_cursor(s, 8, true), Range::new(3, 9));
|
|
|
|
// Reverse ranges.
|
|
assert_eq!(Range::new(6, 3).put_cursor(s, 0, true), Range::new(6, 0));
|
|
assert_eq!(Range::new(6, 3).put_cursor(s, 2, true), Range::new(6, 2));
|
|
assert_eq!(Range::new(6, 3).put_cursor(s, 3, true), Range::new(6, 3));
|
|
assert_eq!(Range::new(6, 3).put_cursor(s, 4, true), Range::new(6, 4));
|
|
assert_eq!(Range::new(6, 3).put_cursor(s, 6, true), Range::new(4, 7));
|
|
assert_eq!(Range::new(6, 3).put_cursor(s, 8, true), Range::new(4, 9));
|
|
}
|
|
|
|
#[test]
|
|
fn test_split_on_matches() {
|
|
use crate::regex::Regex;
|
|
|
|
let text = Rope::from(" abcd efg wrs xyz 123 456");
|
|
|
|
let selection = Selection::new(smallvec![Range::new(0, 9), Range::new(11, 20),], 0);
|
|
|
|
let result = split_on_matches(text.slice(..), &selection, &Regex::new(r"\s+").unwrap());
|
|
|
|
assert_eq!(
|
|
result.ranges(),
|
|
&[
|
|
// TODO: rather than this behavior, maybe we want it
|
|
// to be based on which side is the anchor?
|
|
//
|
|
// We get a leading zero-width range when there's
|
|
// a leading match because ranges are inclusive on
|
|
// the left. Imagine, for example, if the entire
|
|
// selection range were matched: you'd still want
|
|
// at least one range to remain after the split.
|
|
Range::new(0, 0),
|
|
Range::new(1, 5),
|
|
Range::new(6, 9),
|
|
Range::new(11, 13),
|
|
Range::new(16, 19),
|
|
// In contrast to the comment above, there is no
|
|
// _trailing_ zero-width range despite the trailing
|
|
// match, because ranges are exclusive on the right.
|
|
]
|
|
);
|
|
|
|
assert_eq!(
|
|
result.fragments(text.slice(..)).collect::<Vec<_>>(),
|
|
&["", "abcd", "efg", "rs", "xyz"]
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_merge_consecutive_ranges() {
|
|
let selection = Selection::new(
|
|
smallvec![
|
|
Range::new(0, 1),
|
|
Range::new(1, 10),
|
|
Range::new(15, 20),
|
|
Range::new(25, 26),
|
|
Range::new(26, 30)
|
|
],
|
|
4,
|
|
);
|
|
|
|
let result = selection.merge_consecutive_ranges();
|
|
|
|
assert_eq!(
|
|
result.ranges(),
|
|
&[Range::new(0, 10), Range::new(15, 20), Range::new(25, 30)]
|
|
);
|
|
assert_eq!(result.primary_index, 2);
|
|
|
|
let selection = Selection::new(smallvec![Range::new(0, 1)], 0);
|
|
let result = selection.merge_consecutive_ranges();
|
|
|
|
assert_eq!(result.ranges(), &[Range::new(0, 1)]);
|
|
assert_eq!(result.primary_index, 0);
|
|
|
|
let selection = Selection::new(
|
|
smallvec![
|
|
Range::new(0, 1),
|
|
Range::new(1, 5),
|
|
Range::new(5, 8),
|
|
Range::new(8, 10),
|
|
Range::new(10, 15),
|
|
Range::new(18, 25)
|
|
],
|
|
3,
|
|
);
|
|
|
|
let result = selection.merge_consecutive_ranges();
|
|
|
|
assert_eq!(result.ranges(), &[Range::new(0, 15), Range::new(18, 25)]);
|
|
assert_eq!(result.primary_index, 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_selection_contains() {
|
|
fn contains(a: Vec<(usize, usize)>, b: Vec<(usize, usize)>) -> bool {
|
|
let sela = Selection::new(a.iter().map(|a| Range::new(a.0, a.1)).collect(), 0);
|
|
let selb = Selection::new(b.iter().map(|b| Range::new(b.0, b.1)).collect(), 0);
|
|
sela.contains(&selb)
|
|
}
|
|
|
|
// exact match
|
|
assert!(contains(vec!((1, 1)), vec!((1, 1))));
|
|
|
|
// larger set contains smaller
|
|
assert!(contains(vec!((1, 1), (2, 2), (3, 3)), vec!((2, 2))));
|
|
|
|
// multiple matches
|
|
assert!(contains(vec!((1, 1), (2, 2)), vec!((1, 1), (2, 2))));
|
|
|
|
// smaller set can't contain bigger
|
|
assert!(!contains(vec!((1, 1)), vec!((1, 1), (2, 2))));
|
|
|
|
assert!(contains(
|
|
vec!((1, 1), (2, 4), (5, 6), (7, 9), (10, 13)),
|
|
vec!((3, 4), (7, 9))
|
|
));
|
|
assert!(!contains(vec!((1, 1), (5, 6)), vec!((1, 6))));
|
|
|
|
// multiple ranges of other are all contained in some ranges of self,
|
|
assert!(contains(
|
|
vec!((1, 4), (7, 10)),
|
|
vec!((1, 2), (3, 4), (7, 9))
|
|
));
|
|
}
|
|
}
|