helix-mirror/helix-core/src/selection.rs
Michael Davis da2afe7353 Add '#' and '.' special registers
These come from Kakoune:

* '#' is the selection index register. It's read-only and produces the
  selection index numbers, 1-indexed.
* '.' is the selection contents register. It is also read-only and
  mirrors the contents of the current selections when read.

We switch the iterators returned from Selection's `fragments` and
`slices` methods to ExactSizeIterators because:

* The selection contents register can simply return the fragments
  iterator.
* ExactSizeIterator is already implemented for iterators over Vecs, so
  it's essentially free.
* The `len` method can be useful on its own.
2023-07-31 15:05:38 +09:00

1288 lines
42 KiB
Rust

//! Selections are the primary editing construct. Even cursors are
//! defined as a selection range.
//!
//! All positioning is done via `char` offsets into the buffer.
use crate::{
graphemes::{
ensure_grapheme_boundary_next, ensure_grapheme_boundary_prev, next_grapheme_boundary,
prev_grapheme_boundary,
},
movement::Direction,
Assoc, ChangeSet, RopeGraphemes, RopeSlice,
};
use smallvec::{smallvec, SmallVec};
use std::borrow::Cow;
/// A single selection range.
///
/// A range consists of an "anchor" and "head" position in
/// the text. The head is the part that the user moves when
/// directly extending a selection. The head and anchor
/// can be in any order, or even share the same position.
///
/// The anchor and head positions use gap indexing, meaning
/// that their indices represent the gaps *between* `char`s
/// rather than the `char`s themselves. For example, 1
/// represents the position between the first and second `char`.
///
/// Below are some examples of `Range` configurations.
/// The anchor and head indices are shown as "(anchor, head)"
/// tuples, followed by example text with "[" and "]" symbols
/// representing the anchor and head positions:
///
/// - (0, 3): `[Som]e text`.
/// - (3, 0): `]Som[e text`.
/// - (2, 7): `So[me te]xt`.
/// - (1, 1): `S[]ome text`.
///
/// Ranges are considered to be inclusive on the left and
/// exclusive on the right, regardless of anchor-head ordering.
/// This means, for example, that non-zero-width ranges that
/// are directly adjacent, sharing an edge, do not overlap.
/// However, a zero-width range will overlap with the shared
/// left-edge of another range.
///
/// By convention, user-facing ranges are considered to have
/// a block cursor on the head-side of the range that spans a
/// single grapheme inward from the range's edge. There are a
/// variety of helper methods on `Range` for working in terms of
/// that block cursor, all of which have `cursor` in their name.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct Range {
/// The anchor of the range: the side that doesn't move when extending.
pub anchor: usize,
/// The head of the range, moved when extending.
pub head: usize,
/// The previous visual offset (softwrapped lines and columns) from
/// the start of the line
pub old_visual_position: Option<(u32, u32)>,
}
impl Range {
pub fn new(anchor: usize, head: usize) -> Self {
Self {
anchor,
head,
old_visual_position: None,
}
}
pub fn point(head: usize) -> Self {
Self::new(head, head)
}
/// Start of the range.
#[inline]
#[must_use]
pub fn from(&self) -> usize {
std::cmp::min(self.anchor, self.head)
}
/// End of the range.
#[inline]
#[must_use]
pub fn to(&self) -> usize {
std::cmp::max(self.anchor, self.head)
}
/// Total length of the range.
#[inline]
#[must_use]
pub fn len(&self) -> usize {
self.to() - self.from()
}
/// The (inclusive) range of lines that the range overlaps.
#[inline]
#[must_use]
pub fn line_range(&self, text: RopeSlice) -> (usize, usize) {
let from = self.from();
let to = if self.is_empty() {
self.to()
} else {
prev_grapheme_boundary(text, self.to()).max(from)
};
(text.char_to_line(from), text.char_to_line(to))
}
/// `true` when head and anchor are at the same position.
#[inline]
pub fn is_empty(&self) -> bool {
self.anchor == self.head
}
/// `Direction::Backward` when head < anchor.
/// `Direction::Backward` otherwise.
#[inline]
#[must_use]
pub fn direction(&self) -> Direction {
if self.head < self.anchor {
Direction::Backward
} else {
Direction::Forward
}
}
/// Flips the direction of the selection
pub fn flip(&self) -> Self {
Self {
anchor: self.head,
head: self.anchor,
old_visual_position: self.old_visual_position,
}
}
/// Returns the selection if it goes in the direction of `direction`,
/// flipping the selection otherwise.
pub fn with_direction(self, direction: Direction) -> Self {
if self.direction() == direction {
self
} else {
self.flip()
}
}
/// Check two ranges for overlap.
#[must_use]
pub fn overlaps(&self, other: &Self) -> bool {
// To my eye, it's non-obvious why this works, but I arrived
// at it after transforming the slower version that explicitly
// enumerated more cases. The unit tests are thorough.
self.from() == other.from() || (self.to() > other.from() && other.to() > self.from())
}
#[inline]
pub fn contains_range(&self, other: &Self) -> bool {
self.from() <= other.from() && self.to() >= other.to()
}
pub fn contains(&self, pos: usize) -> bool {
self.from() <= pos && pos < self.to()
}
/// Map a range through a set of changes. Returns a new range representing
/// the same position after the changes are applied. Note that this
/// function runs in O(N) (N is number of changes) and can therefore
/// cause performance problems if run for a large number of ranges as the
/// complexity is then O(MN) (for multicuror M=N usually). Instead use
/// [Selection::map] or [ChangeSet::update_positions] instead
pub fn map(mut self, changes: &ChangeSet) -> Self {
use std::cmp::Ordering;
if changes.is_empty() {
return self;
}
let positions_to_map = match self.anchor.cmp(&self.head) {
Ordering::Equal => [
(&mut self.anchor, Assoc::After),
(&mut self.head, Assoc::After),
],
Ordering::Less => [
(&mut self.anchor, Assoc::After),
(&mut self.head, Assoc::Before),
],
Ordering::Greater => [
(&mut self.head, Assoc::After),
(&mut self.anchor, Assoc::Before),
],
};
changes.update_positions(positions_to_map.into_iter());
self.old_visual_position = None;
self
}
/// Extend the range to cover at least `from` `to`.
#[must_use]
pub fn extend(&self, from: usize, to: usize) -> Self {
debug_assert!(from <= to);
if self.anchor <= self.head {
Self {
anchor: self.anchor.min(from),
head: self.head.max(to),
old_visual_position: None,
}
} else {
Self {
anchor: self.anchor.max(to),
head: self.head.min(from),
old_visual_position: None,
}
}
}
/// Returns a range that encompasses both input ranges.
///
/// This is like `extend()`, but tries to negotiate the
/// anchor/head ordering between the two input ranges.
#[must_use]
pub fn merge(&self, other: Self) -> Self {
if self.anchor > self.head && other.anchor > other.head {
Range {
anchor: self.anchor.max(other.anchor),
head: self.head.min(other.head),
old_visual_position: None,
}
} else {
Range {
anchor: self.from().min(other.from()),
head: self.to().max(other.to()),
old_visual_position: None,
}
}
}
// groupAt
/// Returns the text inside this range given the text of the whole buffer.
///
/// The returned `Cow` is a reference if the range of text is inside a single
/// chunk of the rope. Otherwise a copy of the text is returned. Consider
/// using `slice` instead if you do not need a `Cow` or `String` to avoid copying.
#[inline]
pub fn fragment<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> Cow<'b, str> {
self.slice(text).into()
}
/// Returns the text inside this range given the text of the whole buffer.
///
/// The returned value is a reference to the passed slice. This method never
/// copies any contents.
#[inline]
pub fn slice<'a, 'b: 'a>(&'a self, text: RopeSlice<'b>) -> RopeSlice<'b> {
text.slice(self.from()..self.to())
}
//--------------------------------
// Alignment methods.
/// Compute a possibly new range from this range, with its ends
/// shifted as needed to align with grapheme boundaries.
///
/// Zero-width ranges will always stay zero-width, and non-zero-width
/// ranges will never collapse to zero-width.
#[must_use]
pub fn grapheme_aligned(&self, slice: RopeSlice) -> Self {
use std::cmp::Ordering;
let (new_anchor, new_head) = match self.anchor.cmp(&self.head) {
Ordering::Equal => {
let pos = ensure_grapheme_boundary_prev(slice, self.anchor);
(pos, pos)
}
Ordering::Less => (
ensure_grapheme_boundary_prev(slice, self.anchor),
ensure_grapheme_boundary_next(slice, self.head),
),
Ordering::Greater => (
ensure_grapheme_boundary_next(slice, self.anchor),
ensure_grapheme_boundary_prev(slice, self.head),
),
};
Range {
anchor: new_anchor,
head: new_head,
old_visual_position: if new_anchor == self.anchor {
self.old_visual_position
} else {
None
},
}
}
/// Compute a possibly new range from this range, attempting to ensure
/// a minimum range width of 1 char by shifting the head in the forward
/// direction as needed.
///
/// This method will never shift the anchor, and will only shift the
/// head in the forward direction. Therefore, this method can fail
/// at ensuring the minimum width if and only if the passed range is
/// both zero-width and at the end of the `RopeSlice`.
///
/// If the input range is grapheme-boundary aligned, the returned range
/// will also be. Specifically, if the head needs to shift to achieve
/// the minimum width, it will shift to the next grapheme boundary.
#[must_use]
#[inline]
pub fn min_width_1(&self, slice: RopeSlice) -> Self {
if self.anchor == self.head {
Range {
anchor: self.anchor,
head: next_grapheme_boundary(slice, self.head),
old_visual_position: self.old_visual_position,
}
} else {
*self
}
}
//--------------------------------
// Block-cursor methods.
/// Gets the left-side position of the block cursor.
#[must_use]
#[inline]
pub fn cursor(self, text: RopeSlice) -> usize {
if self.head > self.anchor {
prev_grapheme_boundary(text, self.head)
} else {
self.head
}
}
/// Puts the left side of the block cursor at `char_idx`, optionally extending.
///
/// This follows "1-width" semantics, and therefore does a combination of anchor
/// and head moves to behave as if both the front and back of the range are 1-width
/// blocks
///
/// This method assumes that the range and `char_idx` are already properly
/// grapheme-aligned.
#[must_use]
#[inline]
pub fn put_cursor(self, text: RopeSlice, char_idx: usize, extend: bool) -> Range {
if extend {
let anchor = if self.head >= self.anchor && char_idx < self.anchor {
next_grapheme_boundary(text, self.anchor)
} else if self.head < self.anchor && char_idx >= self.anchor {
prev_grapheme_boundary(text, self.anchor)
} else {
self.anchor
};
if anchor <= char_idx {
Range::new(anchor, next_grapheme_boundary(text, char_idx))
} else {
Range::new(anchor, char_idx)
}
} else {
Range::point(char_idx)
}
}
/// The line number that the block-cursor is on.
#[inline]
#[must_use]
pub fn cursor_line(&self, text: RopeSlice) -> usize {
text.char_to_line(self.cursor(text))
}
/// Returns true if this Range covers a single grapheme in the given text
pub fn is_single_grapheme(&self, doc: RopeSlice) -> bool {
let mut graphemes = RopeGraphemes::new(doc.slice(self.from()..self.to()));
let first = graphemes.next();
let second = graphemes.next();
first.is_some() && second.is_none()
}
}
impl From<(usize, usize)> for Range {
fn from((anchor, head): (usize, usize)) -> Self {
Self {
anchor,
head,
old_visual_position: None,
}
}
}
/// A selection consists of one or more selection ranges.
/// invariant: A selection can never be empty (always contains at least primary range).
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Selection {
ranges: SmallVec<[Range; 1]>,
primary_index: usize,
}
#[allow(clippy::len_without_is_empty)] // a Selection is never empty
impl Selection {
// eq
#[inline]
#[must_use]
pub fn primary(&self) -> Range {
self.ranges[self.primary_index]
}
#[inline]
#[must_use]
pub fn primary_mut(&mut self) -> &mut Range {
&mut self.ranges[self.primary_index]
}
/// Ensure selection containing only the primary selection.
pub fn into_single(self) -> Self {
if self.ranges.len() == 1 {
self
} else {
Self {
ranges: smallvec![self.ranges[self.primary_index]],
primary_index: 0,
}
}
}
/// Adds a new range to the selection and makes it the primary range.
pub fn push(mut self, range: Range) -> Self {
self.ranges.push(range);
self.set_primary_index(self.ranges().len() - 1);
self.normalize()
}
/// Removes a range from the selection.
pub fn remove(mut self, index: usize) -> Self {
assert!(
self.ranges.len() > 1,
"can't remove the last range from a selection!"
);
self.ranges.remove(index);
if index < self.primary_index || self.primary_index == self.ranges.len() {
self.primary_index -= 1;
}
self
}
/// Replace a range in the selection with a new range.
pub fn replace(mut self, index: usize, range: Range) -> Self {
self.ranges[index] = range;
self.normalize()
}
/// Map selections over a set of changes. Useful for adjusting the selection position after
/// applying changes to a document.
pub fn map(self, changes: &ChangeSet) -> Self {
self.map_no_normalize(changes).normalize()
}
/// Map selections over a set of changes. Useful for adjusting the selection position after
/// applying changes to a document. Doesn't normalize the selection
pub fn map_no_normalize(mut self, changes: &ChangeSet) -> Self {
if changes.is_empty() {
return self;
}
let positions_to_map = self.ranges.iter_mut().flat_map(|range| {
use std::cmp::Ordering;
range.old_visual_position = None;
match range.anchor.cmp(&range.head) {
Ordering::Equal => [
(&mut range.anchor, Assoc::After),
(&mut range.head, Assoc::After),
],
Ordering::Less => [
(&mut range.anchor, Assoc::After),
(&mut range.head, Assoc::Before),
],
Ordering::Greater => [
(&mut range.head, Assoc::After),
(&mut range.anchor, Assoc::Before),
],
}
});
changes.update_positions(positions_to_map);
self
}
pub fn ranges(&self) -> &[Range] {
&self.ranges
}
pub fn primary_index(&self) -> usize {
self.primary_index
}
pub fn set_primary_index(&mut self, idx: usize) {
assert!(idx < self.ranges.len());
self.primary_index = idx;
}
#[must_use]
/// Constructs a selection holding a single range.
pub fn single(anchor: usize, head: usize) -> Self {
Self {
ranges: smallvec![Range {
anchor,
head,
old_visual_position: None
}],
primary_index: 0,
}
}
/// Constructs a selection holding a single cursor.
pub fn point(pos: usize) -> Self {
Self::single(pos, pos)
}
/// Normalizes a `Selection`.
fn normalize(mut self) -> Self {
if self.len() < 2 {
return self;
}
let mut primary = self.ranges[self.primary_index];
self.ranges.sort_unstable_by_key(Range::from);
self.ranges.dedup_by(|curr_range, prev_range| {
if prev_range.overlaps(curr_range) {
let new_range = curr_range.merge(*prev_range);
if prev_range == &primary || curr_range == &primary {
primary = new_range;
}
*prev_range = new_range;
true
} else {
false
}
});
self.primary_index = self
.ranges
.iter()
.position(|&range| range == primary)
.unwrap();
self
}
/// Replaces ranges with one spanning from first to last range.
pub fn merge_ranges(self) -> Self {
let first = self.ranges.first().unwrap();
let last = self.ranges.last().unwrap();
Selection::new(smallvec![first.merge(*last)], 0)
}
/// Merges all ranges that are consecutive.
pub fn merge_consecutive_ranges(mut self) -> Self {
let mut primary = self.ranges[self.primary_index];
self.ranges.dedup_by(|curr_range, prev_range| {
if prev_range.to() == curr_range.from() {
let new_range = curr_range.merge(*prev_range);
if prev_range == &primary || curr_range == &primary {
primary = new_range;
}
*prev_range = new_range;
true
} else {
false
}
});
self.primary_index = self
.ranges
.iter()
.position(|&range| range == primary)
.unwrap();
self
}
// TODO: consume an iterator or a vec to reduce allocations?
#[must_use]
pub fn new(ranges: SmallVec<[Range; 1]>, primary_index: usize) -> Self {
assert!(!ranges.is_empty());
debug_assert!(primary_index < ranges.len());
let selection = Self {
ranges,
primary_index,
};
selection.normalize()
}
/// Takes a closure and maps each `Range` over the closure.
pub fn transform<F>(mut self, mut f: F) -> Self
where
F: FnMut(Range) -> Range,
{
for range in self.ranges.iter_mut() {
*range = f(*range)
}
self.normalize()
}
/// Takes a closure and maps each `Range` over the closure to multiple `Range`s.
pub fn transform_iter<F, I>(mut self, f: F) -> Self
where
F: FnMut(Range) -> I,
I: Iterator<Item = Range>,
{
self.ranges = self.ranges.into_iter().flat_map(f).collect();
self.normalize()
}
// Ensures the selection adheres to the following invariants:
// 1. All ranges are grapheme aligned.
// 2. All ranges are at least 1 character wide, unless at the
// very end of the document.
// 3. Ranges are non-overlapping.
// 4. Ranges are sorted by their position in the text.
pub fn ensure_invariants(self, text: RopeSlice) -> Self {
self.transform(|r| r.min_width_1(text).grapheme_aligned(text))
.normalize()
}
/// Transforms the selection into all of the left-side head positions,
/// using block-cursor semantics.
pub fn cursors(self, text: RopeSlice) -> Self {
self.transform(|range| Range::point(range.cursor(text)))
}
pub fn fragments<'a>(
&'a self,
text: RopeSlice<'a>,
) -> impl DoubleEndedIterator<Item = Cow<'a, str>> + ExactSizeIterator<Item = Cow<str>> + 'a
{
self.ranges.iter().map(move |range| range.fragment(text))
}
pub fn slices<'a>(
&'a self,
text: RopeSlice<'a>,
) -> impl DoubleEndedIterator<Item = RopeSlice<'a>> + ExactSizeIterator<Item = RopeSlice<'a>> + 'a
{
self.ranges.iter().map(move |range| range.slice(text))
}
#[inline(always)]
pub fn iter(&self) -> std::slice::Iter<'_, Range> {
self.ranges.iter()
}
#[inline(always)]
pub fn len(&self) -> usize {
self.ranges.len()
}
// returns true if self ⊇ other
pub fn contains(&self, other: &Selection) -> bool {
let (mut iter_self, mut iter_other) = (self.iter(), other.iter());
let (mut ele_self, mut ele_other) = (iter_self.next(), iter_other.next());
loop {
match (ele_self, ele_other) {
(Some(ra), Some(rb)) => {
if !ra.contains_range(rb) {
// `self` doesn't contain next element from `other`, advance `self`, we need to match all from `other`
ele_self = iter_self.next();
} else {
// matched element from `other`, advance `other`
ele_other = iter_other.next();
};
}
(None, Some(_)) => {
// exhausted `self`, we can't match the reminder of `other`
return false;
}
(_, None) => {
// no elements from `other` left to match, `self` contains `other`
return true;
}
}
}
}
}
impl<'a> IntoIterator for &'a Selection {
type Item = &'a Range;
type IntoIter = std::slice::Iter<'a, Range>;
fn into_iter(self) -> std::slice::Iter<'a, Range> {
self.ranges().iter()
}
}
impl IntoIterator for Selection {
type Item = Range;
type IntoIter = smallvec::IntoIter<[Range; 1]>;
fn into_iter(self) -> smallvec::IntoIter<[Range; 1]> {
self.ranges.into_iter()
}
}
// TODO: checkSelection -> check if valid for doc length && sorted
pub fn keep_or_remove_matches(
text: RopeSlice,
selection: &Selection,
regex: &crate::regex::Regex,
remove: bool,
) -> Option<Selection> {
let result: SmallVec<_> = selection
.iter()
.filter(|range| regex.is_match(&range.fragment(text)) ^ remove)
.copied()
.collect();
// TODO: figure out a new primary index
if !result.is_empty() {
return Some(Selection::new(result, 0));
}
None
}
pub fn select_on_matches(
text: RopeSlice,
selection: &Selection,
regex: &crate::regex::Regex,
) -> Option<Selection> {
let mut result = SmallVec::with_capacity(selection.len());
for sel in selection {
// TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
let fragment = sel.fragment(text);
let sel_start = sel.from();
let start_byte = text.char_to_byte(sel_start);
for mat in regex.find_iter(&fragment) {
// TODO: retain range direction
let start = text.byte_to_char(start_byte + mat.start());
let end = text.byte_to_char(start_byte + mat.end());
let range = Range::new(start, end);
// Make sure the match is not right outside of the selection.
// These invalid matches can come from using RegEx anchors like `^`, `$`
if range != Range::point(sel.to()) {
result.push(range);
}
}
}
// TODO: figure out a new primary index
if !result.is_empty() {
return Some(Selection::new(result, 0));
}
None
}
// TODO: support to split on capture #N instead of whole match
pub fn split_on_matches(
text: RopeSlice,
selection: &Selection,
regex: &crate::regex::Regex,
) -> Selection {
let mut result = SmallVec::with_capacity(selection.len());
for sel in selection {
// Special case: zero-width selection.
if sel.from() == sel.to() {
result.push(*sel);
continue;
}
// TODO: can't avoid occasional allocations since Regex can't operate on chunks yet
let fragment = sel.fragment(text);
let sel_start = sel.from();
let sel_end = sel.to();
let start_byte = text.char_to_byte(sel_start);
let mut start = sel_start;
for mat in regex.find_iter(&fragment) {
// TODO: retain range direction
let end = text.byte_to_char(start_byte + mat.start());
result.push(Range::new(start, end));
start = text.byte_to_char(start_byte + mat.end());
}
if start < sel_end {
result.push(Range::new(start, sel_end));
}
}
// TODO: figure out a new primary index
Selection::new(result, 0)
}
#[cfg(test)]
mod test {
use super::*;
use crate::Rope;
#[test]
#[should_panic]
fn test_new_empty() {
let _ = Selection::new(smallvec![], 0);
}
#[test]
fn test_create_normalizes_and_merges() {
let sel = Selection::new(
smallvec![
Range::new(10, 12),
Range::new(6, 7),
Range::new(4, 5),
Range::new(3, 4),
Range::new(0, 6),
Range::new(7, 8),
Range::new(9, 13),
Range::new(13, 14),
],
0,
);
let res = sel
.ranges
.into_iter()
.map(|range| format!("{}/{}", range.anchor, range.head))
.collect::<Vec<String>>()
.join(",");
assert_eq!(res, "0/6,6/7,7/8,9/13,13/14");
// it correctly calculates a new primary index
let sel = Selection::new(
smallvec![Range::new(0, 2), Range::new(1, 5), Range::new(4, 7)],
2,
);
let res = sel
.ranges
.into_iter()
.map(|range| format!("{}/{}", range.anchor, range.head))
.collect::<Vec<String>>()
.join(",");
assert_eq!(res, "0/7");
assert_eq!(sel.primary_index, 0);
}
#[test]
fn test_create_merges_adjacent_points() {
let sel = Selection::new(
smallvec![
Range::new(10, 12),
Range::new(12, 12),
Range::new(12, 12),
Range::new(10, 10),
Range::new(8, 10),
],
0,
);
let res = sel
.ranges
.into_iter()
.map(|range| format!("{}/{}", range.anchor, range.head))
.collect::<Vec<String>>()
.join(",");
assert_eq!(res, "8/10,10/12,12/12");
}
#[test]
fn test_contains() {
let range = Range::new(10, 12);
assert!(!range.contains(9));
assert!(range.contains(10));
assert!(range.contains(11));
assert!(!range.contains(12));
assert!(!range.contains(13));
let range = Range::new(9, 6);
assert!(!range.contains(9));
assert!(range.contains(7));
assert!(range.contains(6));
}
#[test]
fn test_overlaps() {
fn overlaps(a: (usize, usize), b: (usize, usize)) -> bool {
Range::new(a.0, a.1).overlaps(&Range::new(b.0, b.1))
}
// Two non-zero-width ranges, no overlap.
assert!(!overlaps((0, 3), (3, 6)));
assert!(!overlaps((0, 3), (6, 3)));
assert!(!overlaps((3, 0), (3, 6)));
assert!(!overlaps((3, 0), (6, 3)));
assert!(!overlaps((3, 6), (0, 3)));
assert!(!overlaps((3, 6), (3, 0)));
assert!(!overlaps((6, 3), (0, 3)));
assert!(!overlaps((6, 3), (3, 0)));
// Two non-zero-width ranges, overlap.
assert!(overlaps((0, 4), (3, 6)));
assert!(overlaps((0, 4), (6, 3)));
assert!(overlaps((4, 0), (3, 6)));
assert!(overlaps((4, 0), (6, 3)));
assert!(overlaps((3, 6), (0, 4)));
assert!(overlaps((3, 6), (4, 0)));
assert!(overlaps((6, 3), (0, 4)));
assert!(overlaps((6, 3), (4, 0)));
// Zero-width and non-zero-width range, no overlap.
assert!(!overlaps((0, 3), (3, 3)));
assert!(!overlaps((3, 0), (3, 3)));
assert!(!overlaps((3, 3), (0, 3)));
assert!(!overlaps((3, 3), (3, 0)));
// Zero-width and non-zero-width range, overlap.
assert!(overlaps((1, 4), (1, 1)));
assert!(overlaps((4, 1), (1, 1)));
assert!(overlaps((1, 1), (1, 4)));
assert!(overlaps((1, 1), (4, 1)));
assert!(overlaps((1, 4), (3, 3)));
assert!(overlaps((4, 1), (3, 3)));
assert!(overlaps((3, 3), (1, 4)));
assert!(overlaps((3, 3), (4, 1)));
// Two zero-width ranges, no overlap.
assert!(!overlaps((0, 0), (1, 1)));
assert!(!overlaps((1, 1), (0, 0)));
// Two zero-width ranges, overlap.
assert!(overlaps((1, 1), (1, 1)));
}
#[test]
fn test_grapheme_aligned() {
let r = Rope::from_str("\r\nHi\r\n");
let s = r.slice(..);
// Zero-width.
assert_eq!(Range::new(0, 0).grapheme_aligned(s), Range::new(0, 0));
assert_eq!(Range::new(1, 1).grapheme_aligned(s), Range::new(0, 0));
assert_eq!(Range::new(2, 2).grapheme_aligned(s), Range::new(2, 2));
assert_eq!(Range::new(3, 3).grapheme_aligned(s), Range::new(3, 3));
assert_eq!(Range::new(4, 4).grapheme_aligned(s), Range::new(4, 4));
assert_eq!(Range::new(5, 5).grapheme_aligned(s), Range::new(4, 4));
assert_eq!(Range::new(6, 6).grapheme_aligned(s), Range::new(6, 6));
// Forward.
assert_eq!(Range::new(0, 1).grapheme_aligned(s), Range::new(0, 2));
assert_eq!(Range::new(1, 2).grapheme_aligned(s), Range::new(0, 2));
assert_eq!(Range::new(2, 3).grapheme_aligned(s), Range::new(2, 3));
assert_eq!(Range::new(3, 4).grapheme_aligned(s), Range::new(3, 4));
assert_eq!(Range::new(4, 5).grapheme_aligned(s), Range::new(4, 6));
assert_eq!(Range::new(5, 6).grapheme_aligned(s), Range::new(4, 6));
assert_eq!(Range::new(0, 2).grapheme_aligned(s), Range::new(0, 2));
assert_eq!(Range::new(1, 3).grapheme_aligned(s), Range::new(0, 3));
assert_eq!(Range::new(2, 4).grapheme_aligned(s), Range::new(2, 4));
assert_eq!(Range::new(3, 5).grapheme_aligned(s), Range::new(3, 6));
assert_eq!(Range::new(4, 6).grapheme_aligned(s), Range::new(4, 6));
// Reverse.
assert_eq!(Range::new(1, 0).grapheme_aligned(s), Range::new(2, 0));
assert_eq!(Range::new(2, 1).grapheme_aligned(s), Range::new(2, 0));
assert_eq!(Range::new(3, 2).grapheme_aligned(s), Range::new(3, 2));
assert_eq!(Range::new(4, 3).grapheme_aligned(s), Range::new(4, 3));
assert_eq!(Range::new(5, 4).grapheme_aligned(s), Range::new(6, 4));
assert_eq!(Range::new(6, 5).grapheme_aligned(s), Range::new(6, 4));
assert_eq!(Range::new(2, 0).grapheme_aligned(s), Range::new(2, 0));
assert_eq!(Range::new(3, 1).grapheme_aligned(s), Range::new(3, 0));
assert_eq!(Range::new(4, 2).grapheme_aligned(s), Range::new(4, 2));
assert_eq!(Range::new(5, 3).grapheme_aligned(s), Range::new(6, 3));
assert_eq!(Range::new(6, 4).grapheme_aligned(s), Range::new(6, 4));
}
#[test]
fn test_min_width_1() {
let r = Rope::from_str("\r\nHi\r\n");
let s = r.slice(..);
// Zero-width.
assert_eq!(Range::new(0, 0).min_width_1(s), Range::new(0, 2));
assert_eq!(Range::new(1, 1).min_width_1(s), Range::new(1, 2));
assert_eq!(Range::new(2, 2).min_width_1(s), Range::new(2, 3));
assert_eq!(Range::new(3, 3).min_width_1(s), Range::new(3, 4));
assert_eq!(Range::new(4, 4).min_width_1(s), Range::new(4, 6));
assert_eq!(Range::new(5, 5).min_width_1(s), Range::new(5, 6));
assert_eq!(Range::new(6, 6).min_width_1(s), Range::new(6, 6));
// Forward.
assert_eq!(Range::new(0, 1).min_width_1(s), Range::new(0, 1));
assert_eq!(Range::new(1, 2).min_width_1(s), Range::new(1, 2));
assert_eq!(Range::new(2, 3).min_width_1(s), Range::new(2, 3));
assert_eq!(Range::new(3, 4).min_width_1(s), Range::new(3, 4));
assert_eq!(Range::new(4, 5).min_width_1(s), Range::new(4, 5));
assert_eq!(Range::new(5, 6).min_width_1(s), Range::new(5, 6));
// Reverse.
assert_eq!(Range::new(1, 0).min_width_1(s), Range::new(1, 0));
assert_eq!(Range::new(2, 1).min_width_1(s), Range::new(2, 1));
assert_eq!(Range::new(3, 2).min_width_1(s), Range::new(3, 2));
assert_eq!(Range::new(4, 3).min_width_1(s), Range::new(4, 3));
assert_eq!(Range::new(5, 4).min_width_1(s), Range::new(5, 4));
assert_eq!(Range::new(6, 5).min_width_1(s), Range::new(6, 5));
}
#[test]
fn test_select_on_matches() {
use crate::regex::{Regex, RegexBuilder};
let r = Rope::from_str("Nobody expects the Spanish inquisition");
let s = r.slice(..);
let selection = Selection::single(0, r.len_chars());
assert_eq!(
select_on_matches(s, &selection, &Regex::new(r"[A-Z][a-z]*").unwrap()),
Some(Selection::new(
smallvec![Range::new(0, 6), Range::new(19, 26)],
0
))
);
let r = Rope::from_str("This\nString\n\ncontains multiple\nlines");
let s = r.slice(..);
let start_of_line = RegexBuilder::new(r"^").multi_line(true).build().unwrap();
let end_of_line = RegexBuilder::new(r"$").multi_line(true).build().unwrap();
// line without ending
assert_eq!(
select_on_matches(s, &Selection::single(0, 4), &start_of_line),
Some(Selection::single(0, 0))
);
assert_eq!(
select_on_matches(s, &Selection::single(0, 4), &end_of_line),
None
);
// line with ending
assert_eq!(
select_on_matches(s, &Selection::single(0, 5), &start_of_line),
Some(Selection::single(0, 0))
);
assert_eq!(
select_on_matches(s, &Selection::single(0, 5), &end_of_line),
Some(Selection::single(4, 4))
);
// line with start of next line
assert_eq!(
select_on_matches(s, &Selection::single(0, 6), &start_of_line),
Some(Selection::new(
smallvec![Range::point(0), Range::point(5)],
0
))
);
assert_eq!(
select_on_matches(s, &Selection::single(0, 6), &end_of_line),
Some(Selection::single(4, 4))
);
// multiple lines
assert_eq!(
select_on_matches(
s,
&Selection::single(0, s.len_chars()),
&RegexBuilder::new(r"^[a-z ]*$")
.multi_line(true)
.build()
.unwrap()
),
Some(Selection::new(
smallvec![Range::point(12), Range::new(13, 30), Range::new(31, 36)],
0
))
);
}
#[test]
fn test_line_range() {
let r = Rope::from_str("\r\nHi\r\nthere!");
let s = r.slice(..);
// Zero-width ranges.
assert_eq!(Range::new(0, 0).line_range(s), (0, 0));
assert_eq!(Range::new(1, 1).line_range(s), (0, 0));
assert_eq!(Range::new(2, 2).line_range(s), (1, 1));
assert_eq!(Range::new(3, 3).line_range(s), (1, 1));
// Forward ranges.
assert_eq!(Range::new(0, 1).line_range(s), (0, 0));
assert_eq!(Range::new(0, 2).line_range(s), (0, 0));
assert_eq!(Range::new(0, 3).line_range(s), (0, 1));
assert_eq!(Range::new(1, 2).line_range(s), (0, 0));
assert_eq!(Range::new(2, 3).line_range(s), (1, 1));
assert_eq!(Range::new(3, 8).line_range(s), (1, 2));
assert_eq!(Range::new(0, 12).line_range(s), (0, 2));
// Reverse ranges.
assert_eq!(Range::new(1, 0).line_range(s), (0, 0));
assert_eq!(Range::new(2, 0).line_range(s), (0, 0));
assert_eq!(Range::new(3, 0).line_range(s), (0, 1));
assert_eq!(Range::new(2, 1).line_range(s), (0, 0));
assert_eq!(Range::new(3, 2).line_range(s), (1, 1));
assert_eq!(Range::new(8, 3).line_range(s), (1, 2));
assert_eq!(Range::new(12, 0).line_range(s), (0, 2));
}
#[test]
fn test_cursor() {
let r = Rope::from_str("\r\nHi\r\nthere!");
let s = r.slice(..);
// Zero-width ranges.
assert_eq!(Range::new(0, 0).cursor(s), 0);
assert_eq!(Range::new(2, 2).cursor(s), 2);
assert_eq!(Range::new(3, 3).cursor(s), 3);
// Forward ranges.
assert_eq!(Range::new(0, 2).cursor(s), 0);
assert_eq!(Range::new(0, 3).cursor(s), 2);
assert_eq!(Range::new(3, 6).cursor(s), 4);
// Reverse ranges.
assert_eq!(Range::new(2, 0).cursor(s), 0);
assert_eq!(Range::new(6, 2).cursor(s), 2);
assert_eq!(Range::new(6, 3).cursor(s), 3);
}
#[test]
fn test_put_cursor() {
let r = Rope::from_str("\r\nHi\r\nthere!");
let s = r.slice(..);
// Zero-width ranges.
assert_eq!(Range::new(0, 0).put_cursor(s, 0, true), Range::new(0, 2));
assert_eq!(Range::new(0, 0).put_cursor(s, 2, true), Range::new(0, 3));
assert_eq!(Range::new(2, 3).put_cursor(s, 4, true), Range::new(2, 6));
assert_eq!(Range::new(2, 8).put_cursor(s, 4, true), Range::new(2, 6));
assert_eq!(Range::new(8, 8).put_cursor(s, 4, true), Range::new(9, 4));
// Forward ranges.
assert_eq!(Range::new(3, 6).put_cursor(s, 0, true), Range::new(4, 0));
assert_eq!(Range::new(3, 6).put_cursor(s, 2, true), Range::new(4, 2));
assert_eq!(Range::new(3, 6).put_cursor(s, 3, true), Range::new(3, 4));
assert_eq!(Range::new(3, 6).put_cursor(s, 4, true), Range::new(3, 6));
assert_eq!(Range::new(3, 6).put_cursor(s, 6, true), Range::new(3, 7));
assert_eq!(Range::new(3, 6).put_cursor(s, 8, true), Range::new(3, 9));
// Reverse ranges.
assert_eq!(Range::new(6, 3).put_cursor(s, 0, true), Range::new(6, 0));
assert_eq!(Range::new(6, 3).put_cursor(s, 2, true), Range::new(6, 2));
assert_eq!(Range::new(6, 3).put_cursor(s, 3, true), Range::new(6, 3));
assert_eq!(Range::new(6, 3).put_cursor(s, 4, true), Range::new(6, 4));
assert_eq!(Range::new(6, 3).put_cursor(s, 6, true), Range::new(4, 7));
assert_eq!(Range::new(6, 3).put_cursor(s, 8, true), Range::new(4, 9));
}
#[test]
fn test_split_on_matches() {
use crate::regex::Regex;
let text = Rope::from(" abcd efg wrs xyz 123 456");
let selection = Selection::new(smallvec![Range::new(0, 9), Range::new(11, 20),], 0);
let result = split_on_matches(text.slice(..), &selection, &Regex::new(r"\s+").unwrap());
assert_eq!(
result.ranges(),
&[
// TODO: rather than this behavior, maybe we want it
// to be based on which side is the anchor?
//
// We get a leading zero-width range when there's
// a leading match because ranges are inclusive on
// the left. Imagine, for example, if the entire
// selection range were matched: you'd still want
// at least one range to remain after the split.
Range::new(0, 0),
Range::new(1, 5),
Range::new(6, 9),
Range::new(11, 13),
Range::new(16, 19),
// In contrast to the comment above, there is no
// _trailing_ zero-width range despite the trailing
// match, because ranges are exclusive on the right.
]
);
assert_eq!(
result.fragments(text.slice(..)).collect::<Vec<_>>(),
&["", "abcd", "efg", "rs", "xyz"]
);
}
#[test]
fn test_merge_consecutive_ranges() {
let selection = Selection::new(
smallvec![
Range::new(0, 1),
Range::new(1, 10),
Range::new(15, 20),
Range::new(25, 26),
Range::new(26, 30)
],
4,
);
let result = selection.merge_consecutive_ranges();
assert_eq!(
result.ranges(),
&[Range::new(0, 10), Range::new(15, 20), Range::new(25, 30)]
);
assert_eq!(result.primary_index, 2);
let selection = Selection::new(smallvec![Range::new(0, 1)], 0);
let result = selection.merge_consecutive_ranges();
assert_eq!(result.ranges(), &[Range::new(0, 1)]);
assert_eq!(result.primary_index, 0);
let selection = Selection::new(
smallvec![
Range::new(0, 1),
Range::new(1, 5),
Range::new(5, 8),
Range::new(8, 10),
Range::new(10, 15),
Range::new(18, 25)
],
3,
);
let result = selection.merge_consecutive_ranges();
assert_eq!(result.ranges(), &[Range::new(0, 15), Range::new(18, 25)]);
assert_eq!(result.primary_index, 0);
}
#[test]
fn test_selection_contains() {
fn contains(a: Vec<(usize, usize)>, b: Vec<(usize, usize)>) -> bool {
let sela = Selection::new(a.iter().map(|a| Range::new(a.0, a.1)).collect(), 0);
let selb = Selection::new(b.iter().map(|b| Range::new(b.0, b.1)).collect(), 0);
sela.contains(&selb)
}
// exact match
assert!(contains(vec!((1, 1)), vec!((1, 1))));
// larger set contains smaller
assert!(contains(vec!((1, 1), (2, 2), (3, 3)), vec!((2, 2))));
// multiple matches
assert!(contains(vec!((1, 1), (2, 2)), vec!((1, 1), (2, 2))));
// smaller set can't contain bigger
assert!(!contains(vec!((1, 1)), vec!((1, 1), (2, 2))));
assert!(contains(
vec!((1, 1), (2, 4), (5, 6), (7, 9), (10, 13)),
vec!((3, 4), (7, 9))
));
assert!(!contains(vec!((1, 1), (5, 6)), vec!((1, 6))));
// multiple ranges of other are all contained in some ranges of self,
assert!(contains(
vec!((1, 4), (7, 10)),
vec!((1, 2), (3, 4), (7, 9))
));
}
}